
 

Evaluation of CRP contour buffer and filter strips as habitat for native bees and 

predatory ground beetles 

 

 

by 

 

 

Amy Lynn Moorhouse 

 

 

 

 

 

 

A thesis submitted to the graduate faculty 

 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

 

Major: Ecology and Evolutionary Biology 

 

Program of Study Committee: 

Mary A. Harris, Co-Major Professor 

Brian J. Wilsey, Co-Major Professor 

Robert W. Klaver 

 

 

 

 

 

 

 

 

Iowa State University 

 

Ames, Iowa 

 

2016 

 

 

 

 

Copyright © Amy Lynn Moorhouse, 2016. All rights reserved.



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

ProQuest         

Published by ProQuest LLC (    ).  Copyright of the Dissertation is held by the Author.

ProQuest Number:          

10167648

10167648

2016



ii 

 

TABLE OF CONTENTS 

 

Page 

 

ACKNOWLEDGMENTS …………………………………………………………       iii 

 

ABSTRACT ……………………………………………………………………….          iv 

 

CHAPTER 1. GENERAL INTRODUCTION ………………………………….      1 

 Background……………………………………………………………………..  1

 Goals and Objectives …………………………………………………………..  7 

 Thesis Organization ……………………………………………………………  7 

 Literature Cited ………………………………………………………………...  8 

 

CHAPTER 2. IMPACTS OF CURRENT CRP CONTOUR BUFFER AND 

 FILTER STRIPS ON NATIVE BEE (HYMENOPTERA: APOIDEA) 

COMMUNITIES IN IOWA …………....………………………………...........         12 

 Abstract ………………………………………………………………………...         12 

 Introduction …………………………………………………………………….         13 

 Materials and Methods …………………………………………………………         17 

 Results ………………………………………………………………………….         24 

 Discussion ……………………………………………………………………...         29 

 Conclusions …………………………………………………………………….  41 

 Acknowledgments ……………………………………………………………... 42 

 Literature Cited ………………………………………………………………… 42 

 Tables …………………………………………………………………………..  50 

 Figures …………………………………………………………………………. 58 

 

CHAPTER 3. INFLUENCE OF CURRENT CRP CONTOUR BUFFER AND 

 FILTER STRIP PLANT DIVESRITY ON THE TAXONOMIC AND 

FUNCTIONAL DIVERSITY OF PREDATORY GROUND BEETLE 

(COLEOPTERA: CARABIDAE) ASSEMBLAGES IN IOWA ……………...     67 

 Abstract ………………………………………………………………………...         67 

 Introduction …………………………………………………………………….         68 

 Materials and Methods …………………………………………………………         71 

 Results ………………………………………………………………………….         76 

 Discussion ……………………………………………………………………...         78 

 Conclusions …………………………………………………………………….  83 

 Acknowledgments ……………………………………………………………... 84 

 Literature Cited ………………………………………………………………… 84 

 Tables …………………………………………………………………………..  88 

 Figures …………………………………………………………………………. 90 

 

CHAPTER 4. GENERAL CONCLUSIONS …………………………………….. 95 

 Summary ………………………………………………………………………... 95 

 Literature Cited …………………………………………………………………. 98 



iii 

 

ACKNOWLEDGMENTS 

 

 First, I would like to thank my family and friends for their continued support and 

encouragement throughout my time at Iowa State University. You all have been 

immensely helpful and supportive from day one of my research and I greatly appreciate 

all that you have done for me. Thank you to M. Mackert, S. Klein, J. Latimore, K. Vance, 

and S. Jones for all of your assistance with field work; a job I could not have done alone. 

A special thank you to my fellow graduate students, and E. Altrichter, C. Anderson, R. 

Arndorfer, R. Reeves, and B. Towery for all of your support and help with preparation 

for field work. And thank you to K. Rey for your help with all of the statistical support 

and guidance you have given me. 

 I would particularly like to thank my co-major professor, Mary Harris for all of 

her guidance and support throughout the course of this research. I would additionally like 

to thank my other co-major professor, and Brian Wilsey, and my committee member, 

Bob Klaver, for their help along the way. Thank you to the Farm Service Agency for 

funding this project. Also thank you to Iowa State University for providing me with a 

teaching assistantship. And lastly, thank you to all of my landowners for providing me 

access to their land to complete this research. 

  



iv 

 

ABSTRACT 

 

 

 

Suitable habitat for beneficial insects providing ecosystem services has declined 

greatly in agriculturally dominated landscapes. Iowa’s landscape once dominated by 

tallgrass prairie is now dominated by monoculture agriculture, in particular corn (Zea 

mays L.) and soybeans (Glycine max (L.) Merr.). Native bees require resources of pollen 

and nectar and in return provide the service of pollination. Predatory ground beetles are 

natural enemies of many agricultural crop pests but require some habitat in undisturbed, 

non-cropped areas.  

Conservation Reserve Program (CRP) contour buffer and filter strips are potential 

areas of habitat within rowcropped fields. The vegetation mixes commonly planted in 

these strips range from only grass to more highly diverse mixes of grasses and forbs. We 

assessed native bee communities and predatory ground beetle assemblages in current 

CRP contour buffer and filter strips of various forb vegetation mixes using a variety of 

common sampling methods during the growing seasons in 2014 and 2015 from May to 

August. 

Native bee abundance increased as forb diversity increased whereas species 

richness and diversity was not significantly different among plant diversity levels. Bee 

communities at high plant diversity sites were significantly different from communities at 

medium and low plant diversity sites. Positive trends suggest high plant diversity sites 

support higher abundances and species richness of all bee guilds except bumble bees. 

Predatory ground beetle abundance, tribe richness and tribe diversity were not 

significantly different among plant diversity levels. The majority of beetles at each site 



v 

 

were of medium or large sizes with few to no small or very small sized beetles. Overall, 

trends showed forb diversity positively influenced the probability of ground beetle 

assemblages containing beetles from more size classes. 

These results suggest that increased forb diversity within contour buffer and filter 

strips increase available resources for native bee communities but not necessarily for 

predatory ground beetle assemblages. Overall, increasing the number of forbs in a 

contour buffer or filter strip to 15 or more species will support a higher abundance and 

richness of native bees and as few as 5 forb species could be sufficient to support a more 

functionally diverse ground beetle assemblage. 
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CHAPTER 1. GENERAL INTRODUCTION 

Background 

Over several decades, agriculture in the Midwest has intensified through an 

increase in acreage of agricultural land and a decrease in natural or semi-natural land 

(Knight et al. 2009; Le Feon et al. 2010; Tscharntke et al. 2005). This intensification can 

be examined at both the local and landscape scales. At the local scale, individual farm 

size and monoculture production have increased reducing overall crop diversity. At the 

landscape scale, contiguous farmed areas are becoming larger and more homogenized, 

reducing the amount of natural and semi-natural land left in the landscape (Ernoult et al. 

2013; Tscharntke et al. 2005). This landscape simplification has been accompanied by 

losses in biodiversity as well as ecosystem functioning and services (Knight et al. 2009; 

Vasseur et al. 2013).  

Biodiversity loss includes the reduction of native plant species in natural and 

semi-natural lands along with animal species that utilize those lands. Some of these 

wildlife species provide essential services to natural and semi-natural ecosystems as well 

as agricultural systems (Haaland et al. 2011; Knight et al. 2009; Schulte et al. 2006; 

Tscharntke et al. 2005). One such vital wildlife group is the native bees, a diverse 

functional group within many ecosystems providing the service of pollination. Pollination 

is a mutualism which facilitates plant reproduction while provisioning the pollen vector 

with nectar and pollen. However, within recent decades many native and non-native bees, 

have been declining. Both habitat loss and fragmentation have been shown to contribute 

to bee species declines (Bommarco et al. 2010; Carre et al. 2009; Haaland et al. 2011; Le 

Feon et al. 2010; Morandin et al. 2007) among other factors such as insecticides, mites, 
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and pathogens (Potts et al. 2010). Habitat loss, while not the only factor causing these 

declines, results in the loss of essential resources needed for survival. 

 Predatory ground beetles in the family Carabidae, are another group of organisms 

which provide an important ecosystem service of reducing the impacts of agricultural 

pests (Menalled et al. 1999; Woodcock et al. 2010). Carabid beetles are natural enemies 

of many agricultural insect pests and occur within corn and soybean fields as well as 

other agricultural crop systems (Larson et al. 2003; Menalled et al. 1999). Ground beetle 

body size with correlated to feeding and dispersal rates as well as ability to feed upon 

different prey species. However, studies are finding few large beetle species and many 

small beetle species in agricultural fields (Aviron et al. 2005; Kotze and O’Hara 2003). 

This lack of ground beetle diversity could be due to loss of undisturbed non-cropped 

areas within agricultural systems (Aviron et al. 2005; Ribera et al. 2001). 

In the Midwest, particularly Iowa, the landscape once was dominated by diverse 

tallgrass prairie that now covers less than 0.1% of the land (Samson and Knopf 1994). 

The vast majority of Iowa has been converted to agriculture, particularly corn and 

soybeans, which together cover over 70% of the total landscape (US Department of 

Agriculture 2014). Corn and soybean plants cannot provide the ecosystem services such 

as reduced soil, water and nutrient movement that perennial prairie plants provide (Zhou 

et al. 2010, 2014). Annual species, like corn, have shallow root systems and are unable to 

slow the movement of large volumes of water that carry sediment and nutrients such as 

nitrogen and phosphorous out of the fields. Perennial plants on the other hand, have deep 

root systems that better regulate water flow, reducing soil and nutrient loss (Senaviratne 

et al. 2012; Zhou et al. 2010, 2014). Thus, the large tracts of native prairie that once 
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covered Iowa built the deep, fertile soils and held them in place. Agricultural systems 

today are unable to do either but restoration of areas with perennial prairie plants within 

the current matrix of corn and soybean can reduce further sediment and nutrient 

movement out of watersheds (Schulte et al. 2006). 

 The benefits of native plant vegetation have been documented extensively. In 

1985, the United States Department of Agriculture (USDA) Farm Service Agency (FSA) 

initiated the Conservation Reserve Program (CRP) to take environmentally sensitive 

agricultural land out of production and replant it with vegetation that would reduce wind 

and water erosion (Malone 1989; United States Department of Agriculture Natural 

Resources Conservation Service 2014). Various CRP practices were developed that 

focused on mitigating different environmental issues. One of these practices is contour 

buffer strips (NRCS Practice Standard 332) and consists of strips of perennial grass only 

or a grass and legume mix planted along the contour within rowcropped fields. These 

strips are intended to reduce soil erosion and nutrient runoff (Liebman et al. 2013; United 

States Department of Agriculture 2011). A second practice is filter strips (NRCS Practice 

Standard 21), developed to reduce water runoff and remove pollutants from water exiting 

the field ultimately reducing these inputs downstream. Filter strips are planted along the 

contour at the footslope of rowcrop fields with vegetation such as perennial grasses, trees 

and shrubs (Liebman et al. 2013; United States Department of Agriculture 2003). The 

primary goals of implementing these practices are to improve soil health and reduce 

sediment and nutrient loss. However, they also could be used to increase wildlife habitat 

and provide additional ecosystem services (Schulte et al. 2016). Currently, most 

vegetation mixes are chosen to improve water quality, with less emphasis on adding 
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vegetation that may benefit wildlife (United States Department of Agriculture 2007; 

United States Department of Agriculture Natural Resources Conservation Service 2014). 

Additional studies though are needed to determine if current CRP practices such as 

contour buffer and filter strips as well as differing plant mixes provide habitat and 

resources for wildlife.   

 Researchers in Europe have been investigating the influence of planting grass and 

wildflower strips in agricultural fields on the pollinator diversity found in these strips. 

The European Union initiated the Agri-Environment Schemes (AES) to protect and 

promote bees and other pollinators (Haaland et al. 2011; Rollin et al. 2013). Among these 

schemes, there are several plant mixes that can be included within or next to agricultural 

fields: wildflower mixes, pollen and nectar rich mixes, and grass strips. Grass strips are 

buffer strips, which are similar to USDA buffer strips, and contain only grasses or grass 

and a few forbs (Blake et al. 2011). Pollen and nectar rich mixes and wildflower mixes 

are mostly comprised of forbs, including legumes, intended to provide forage for bees 

(Haaland et al. 2011). Studies examining AES have found that bumblebee richness and 

abundance were highest on pollen and nectar rich mixes and higher on forb mixes than on 

grass only strips (Haaland et al. 2011; Korpela et al. 2013; Pywell et al. 2006). One study 

found that incorporating only thistle and clover for floral resources in grass strips 

provided better pollinator habitat than crops alone (Pywell et al. 2006). Other studies 

have reported similar results with a higher diversity of bees in grassy and uncropped 

strips compared to crop fields, although few bees were present in the grass-only strips 

(Kells et al. 2001; Marshall et al. 2006). These findings suggest that uncropped strips 

provide more resources to bees than crop fields in the absence of nearby flower patches.  
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A review of the effectiveness of wildflower strips on insect conservation reports 

that 14 out of 16 studies found higher insect abundances in wildflower strips compared to 

crop edges or fields whereas 11 out of 13 studies found higher insect diversity in 

wildflower strips (Haaland et al. 2011). A meta-analysis examining AES effectiveness 

determined that these schemes were positively affecting species richness of a variety of 

pollinators and were most effective in simple landscapes. When there were forbs in strips 

within and surrounding crops, pollinators were more abundant and there was an increase 

in bee species richness (Scheper et al. 2013). When there were mass-flowering crops 

nearby, wild bees were still found more frequently in semi-natural land, such as 

wildflower strips, than in the crop fields. However, there was variation in abundance 

within those patches depending on which flowering plants were present. Different 

flowers are attractive to different species of bees and the prevalence of certain plant 

species or genera could influence the abundance of bees in the area (Rollin et al. 2013). 

In 2006 the STRIPS project (Science-based Trials of Rowcrops Integrated with 

Prairie Strips) through Iowa State University began investigating the effects of 

incorporation of a diversity of native tallgrass prairie forbs and grasses into contour 

buffer and filter strips on soil, nutrient and water retention, as current contour buffer and 

filter strips are intended, as well as biodiversity (STRIPs Research Team 2012). At the 

Neal Smith National Wildlife Refuge in Jasper Co., Iowa, strips composed entirely of 

native tallgrass prairie species were incorporated into 2 year corn/soybean rotation 

rowcropped fields in proportions of 0, 10 and 20% of the row cropped area. Researchers 

documented benefits that were disproportionate to the minimal area taken out of crop 

production and converted to prairie vegetation. Compared to 100% rowcropped fields, 
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fields with only 10% area in prairie strips reduced soil and nutrient loss by more than 

90% (Zhou et al. 2010, 2014). From 2009 to 2011, plant species richness increased until 

the strips contained 5.8 times higher plant diversity than the cropped portions of the fields 

(Hirsh et al. 2013). Forty-five species of birds were found to utilize the strips (Schulte et 

al. 2016) along with an increase in insect (aphid) predator abundance, particularly in June 

and September (Cox 2014). In addition, 107 bee species were found within the strips 

equaling the number of species found in the nearby reconstructed tallgrass prairie (Harris, 

unpub. data). Overall, adding areas of perennial vegetation (forbs, legumes, and grasses) 

to crop fields, significantly increased biodiversity as well as provided the environmental 

benefits for which contour buffer and filter strips are intended. 

Much of the research on the benefits of buffer strips to both water quality and 

pollinators has been conducted in Europe. The STRIPS project is one of the first in the 

U.S. to investigate these issues. Environmental programs in the U.S. are beginning to 

make this connection by adding new types of CRP plant mixtures, but have yet to impact 

change on a large scale.  

In 2013, a total of 593,056 hectares in Iowa were delineated as CRP land, with 

5,325 of those hectares in contour grass strips and 81,277 hectares in filter strips 

combining for a total of only 14.6% of CRP land (United States Department of 

Agriculture 2013). Furthermore, only 0.16% of total Iowa CRP land (944.5 hectares) was 

specifically designated for pollinator habitat planted with CP 42 mixes (plant mixtures 

similar to AES wildflower mixes and pollen and nectar rich mixes). As AES studies 

suggested, in a simplified landscape such as that dominating Iowa, the addition of diverse 

vegetation mixes could enhance habitat for pollinators. CRP lands, even though not a 
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large proportion of the state, could be areas for improvement of pollinator habitat. 

However, it is first imperative to determine to what extent existing systems are providing 

habitat and forage for bees.  

 Current contour buffer and filter strips within agricultural fields are of different 

vegetation mixes based on CRP contracts developed by the NRCS and the landowner 

(United States Department of Agriculture 2003, 2011). Some landowners choose all grass 

seed mixes, some choose to have 2-3 forb species included and others choose to have 

mixes with more than 15 native forb species. With this variety in vegetation mixes, there 

is a need to assess how well each system is providing habitat for bees and ground beetles.  

Goals and Objectives 

The overall goal of this study was to examine the efficacy of current contour 

buffer and filter strips planted with a range of plant species to provide habitat for native 

bees and predatory ground beetles. The specific objectives were as follows: 

1. Assess native bee species diversity and richness and available flora resources 

within CRP contour buffer and filter strips of various vegetation mixes 

throughout the growing season. 

2. Assess predatory ground beetle taxonomic and functional diversity within 

CRP contour buffer and filter strips of various vegetation mixes. 

Thesis Organization 

 This thesis follows the journal paper format associated with each chapter. Chapter 

1 provides a general introduction to the thesis. Chapter 2 discusses the impacts of various 

CRP contour buffer and filter strip vegetation mixes on native bee communities in Iowa. 

Chapter 3 explores the influence of current contour buffer and filter strip vegetation on 
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taxonomic and functional diversity of predatory ground beetle assemblages in Iowa. 

Chapter 4 summarizes the general conclusions from the two journal papers that comprise 

this thesis. Manuscript authors each contributed to the research design, data analyses and 

writing of these papers. 
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CHAPTER 2. IMPACTS OF CURRENT CRP CONTOUR BUFFER AND FILTER 

STRIPS ON NATIVE BEE (HYMENOPTERA: APOIDEA) COMMUNITIES IN 

IOWA 

 

Modified from a paper to be published in Agriculture, Ecosystems and Environment 

Amy L. Moorhouse1 and Mary A. Harris2 

1Department of Ecology, Evolution and Organismal Biology, Iowa State University, 

Ames, IA 50011; 

2Department of Natural Resource Ecology and Management, Iowa State University, 

Ames, IA 50011 

Abstract 

Native bee species are losing habitat due to the loss of semi-natural and natural 

lands as agriculture intensifies. Iowa’s landscape once dominated by tallgrass prairie is 

now dominated by monoculture agriculture, in particular corn and soybeans. Potential 

areas of habitat include Conservation Reserve Program (CRP) contour buffer and filter 

strips. We assessed native bee communities in contour buffer and filter strips of various 

floral vegetation mixes using a variety of common sampling methods. Native bee 

abundance increased as floral diversity increased whereas species richness and Inverse 

Simpson’s Diversity was not significantly different across plant diversity levels. Bee 

communities at high plant diversity sites were significantly different from the 

communities at medium and low plant diversity sites. Positive trends suggest high plant 

diversity sites support higher abundances and species richness of all bee guilds except 

bumble bees. Contour buffer and filter strips with higher floral diversities support a 

higher abundance of native bees in agriculturally dominated landscapes than low 

diversities. 
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Introduction 

Declines in bee populations are occurring throughout the world (Bartomeus et al. 

2013; Biesmeijer et al. 2006; Cameron et al. 2011; Kearns et al. 1998; Potts et al. 2010), 

as a result of several impacts including pesticide exposure, disease, parasites and a lack of 

forage diversity (Bommarco et al. 2010; Cameron et al. 2011; Goulson et al. 2015; 

Haaland et al. 2011; Krupke et al. 2012). High losses of natural and semi-natural lands, 

such as managed grasslands, orchards and hedgerows have occurred in areas of 

agricultural intensification (Garcia-Feced et al. 2015) where monoculture predominates 

resulting in a homogeneous landscape with low plant, and therefore, forage diversity 

(Knight et al. 2009; Tscharntke et al. 2005). This loss of landscape diversity is resulting 

in the loss of habitat with resources supporting wildlife including bees which provide the 

essential service of pollination in both agricultural and natural ecosystems (Haaland et al. 

2011; Knight et al. 2009; Schulte et al. 2006; Tscharntke et al. 2005).  

Many agricultural crops, particularly fruits and vegetables, are dependent upon 

bees for pollination while providing nectar and pollen forage for bees (Gallai et al. 2009). 

Wind-pollinated crops such as corn can provide bee forage, albeit poor, when there are 

limited local food resources (Hocherl et al. 2012; Krupke et al. 2012) Other crops may 

provide resources for bees although the high levels of disturbance and the short bloom 

period greatly limit the availability of this forage for the vast number of bees inhabiting 

an area throughout an entire growing season (Corbet et al. 1991). In contrast, large 

permanent tracks of land with native vegetation may provide the most suitable habitat for 

bees and other pollinators (Hines and Hendrix 2005). 
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Diverse tallgrass prairie vegetation once predominated the landscape of Iowa, 

USA, however, less than 0.1% of that prairie persists (Samson and Knopf 1994). The 

landscape now is dominated (70-95%) by row-crop agricultural fields, the majority of 

which produce only two crops, corn (Zea mays L.) and soybeans (Glycine max (L.) 

Merr.) (USDA National Agricultural Statistics Service Cropland Data Layer 2014). The 

remaining prairie lands which provide high quality bee habitat are scarce and persist as 

small isolated fragments (Kwaiser and Hendrix 2008).  

Iowa’s landscape today supports over 200 species of native bees, many of which 

have been found in tallgrass prairie remnants. Kwaiser and Hendrix (2008) compared 

tallgrass prairie preserves to ruderal, grass-dominated sites such as buffer and filter strips 

in Iowa. They found the bee community in ruderal lands to consist primarily of common 

bees with rare bees almost entirely absent when compared to communities found in the 

prairie preserves. The prairie preserves provided better habitat to support a higher 

diversity of bees than the ruderal areas. However, the majority of Iowa’s landscape no 

longer consists of tallgrass prairie. 

Although high quality bee habitat provided by prairie is scarce within the 

agricultural landscape, there are other landscape components that can provide enhanced 

bee forage. For example, a study in Iowa found no differences in bee diversity between 

exotic-dominated and native-dominated grasslands regardless of lower forb:grass ratios 

in exotic grasslands (Martin et al. 2015). In addition to the row-cropped portion of 

agricultural fields there may be embedded areas with more permanent and diverse 

vegetation. Such areas include National Conservation Reserve Service (NRCS) 

Conservation Reserve Program (CRP) contour buffer and filter strips. Contour buffer 
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strips are planted within the row-cropped field using a variety of seed mixes of grass only 

or grasses, legumes and forbs (NRCS Practice 332, United States Department of 

Agriculture 2011). Filter strips are also planted with perennial grasses, trees or shrubs on 

the contour of the footslope (NRCS Practice 21, United States Department of Agriculture 

2003). Vegetation mixture characteristics such as the number of blooming species and 

percent cover of blooming species may greatly influence the presence of bees. Additional 

vegetation mixtures with high native forb diversity such as Conservation Practice 42 

(Pollinator Habitat) can be used to provide floral resources. These areas of higher plant 

diversity within the agricultural landscape have the potential to provide enhanced habitat 

which may support a more diverse bee community.  

High quality habitat for bees must contain a diversity of floral resources available 

over an entire growing season as bee species differentially utilize floral resources 

(Decourtye et al. 2010; Delaney et al. 2015; Tepedino 1979). Harmon-Threat and 

Hendrix (2015) in their study of tallgrass prairie remnants found that the majority of bees 

visited flowers of four species: Amorpha canescens Pursh. (Fabaceae), Dalea purpurea 

Vent. (Fabaceae), Ratibida pinnata (Vent.) Barnh. (Asteraceae), and Zizea aurea (L.) 

Koch (Apiaceae). All four species are widely distributed in prairie remnants, often 

abundant and together provide bee forage throughout the growing season. In addition to 

these four potential keystone species however, bees used many other species for forage 

throughout the entire season. A study in Great Britain found similar results in that four 

plant species were providing 50% of the nectar for bees but diverse wild areas enhanced 

floral resources for bees nationally (Baude et al. 2016). 
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While food is essential, nesting sites are equally important for the persistence of a 

bee population (Gathmann and Tscharntke 2002; Sardinas and Kremen 2014). Individual 

bee species can be placed into guilds based on their nesting habit (Neame et al. 2013; 

Sheffield et al. 2013a; Sheffield et al. 2013b). However, as the land is fragmented all 

guilds may not be equally supported in every fragment of natural or semi-natural land 

(Neame et al. 2013). In agricultural landscapes, where crops dominate, there may be few 

areas in which a high diversity of bees find all essential habitat requirements. Such 

required nesting resources include undisturbed bare soil, plant stems, wood and pre-

existing cavities. In addition, resources such as mud and leaves often are needed to line 

tunnels and bees are generally restricted to areas with these resources (Roulston and 

Goodell 2011). In agriculturally dominated landscapes, if appropriate nesting resources 

are not available within or adjacent to crop fields, bees may be forced to abandon the area 

driving local extinction (Wratten et al. 2012).  

Cleptoparasites on the other hand, utilize the nests of their hosts to lay eggs and 

the host then raises their offspring (Rozen 2001). Some of the hosts are very common 

while others are not. For many of the cleptoparasites, the exact host is not known 

(Sheffield et al. 2013b). Thus a genus or genera that many species in the cleptoparasitic 

genus take advantage of is used as a potential host genus (Werneck et al. 2012). This 

makes it difficult to say if the specific host is present along with the parasite. However, a 

parasite would not be present if the host was not present in the area (Bogusch 2005).  

Many sympatric bee species are active during different time periods of the 

growing season and will need forage at times other than crop bloom. As diverse native 

flowering plants bloom in succession throughout the growing season, they supply a 
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continuous food resource for bees that crops are not able to provide (Decourtye et al. 

2010). Also, the row-cropped ground is frequently disturbed with heavy machinery tilling 

and planting as well as fertilizer and pesticide applications. Such frequent disturbance 

precludes nest persistence by ground nesting bees (Delaplane and Mayer 2000: Hopwood 

2008). Contour buffer and filter strips on the other hand, are disturbed much less 

frequently as they are never tilled and only burned or mowed as needed to maintain 

proper plant density and growth (United States Department of Agriculture 2003; United 

States Department of Agriculture 2011). Less disturbance and potentially more blooming 

flowers make contour buffer and filter strips a more ideal location than cropped areas for 

bees to nest and forage when resources are otherwise scarce. 

 The extent to which existing contour buffer and filter strips provide habitat for 

native bees is unknown. This study addresses this question by examining the relationship 

of various vegetation diversities and associated bee diversities in existing contour buffer 

and filter strips within rowcropped corn and soybean fields in Iowa. The objectives of 

this study were to determine: (1) if strips of higher plant diversity sustain a greater 

diversity of bees than strips of lower plant diversity; (2) if particular strip characteristics 

are associated with bee diversity; (3) if bee guilds are differentially supported by strips of 

low and high plant diversity. 

Materials and Methods 

Study Sites 

 

 We conducted all sampling in this study monthly from late May to August in 

2014 and 2015 and additionally in early May in 2015 at farm fields with either contour 

buffer (9 sites) or filter strips (2 sites) of varying plant diversity in central and northeast 
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Iowa. Prior to the initiation of this study, the strips ranged in age since installment from 2 

to greater than 15 years. All sites were separated by a minimum of 3 kilometers to avoid 

overlap in usage by individual bees (Greenleaf and Kremen 2006; Osborne et al. 2008; 

Zurbuchen et al. 2010). In 2014, three sites were located in Jasper County, 2 of which 

were privately owned and 1 at the Neal Smith National Wildlife Refuge. The other sites 

were located on privately owned farms in each of the following counties: Buchanan, 

Carroll, Clayton, Dallas, Grundy, Guthrie and Story. In 2015, the Carroll county site was 

removed from the study by the landowner and in 2015 we sampled a site in the adjacent 

Greene county (Figure 1). We verified that the vegetation communities at the Carroll and 

Greene county sites were statistically indistinguishable (Multi-response Permutation 

Procedure (MRPP)) (t=-1.118, A=0.0217, p=0.133; McCune and Mefford 2006). 

Study sites were assigned to 1 of 3 categories based on the diversity of forb 

species found throughout the growing season. Low diversity sites contained 0-3 forb 

species (3 sites), medium diversity sites 5-13 forb species (4 sites) and high diversity sites 

greater than 15 forb species (4 sites). We used CropScape (USDA National Agricultural 

Statistics Service Cropland Data Layer 2014) 30 meter resolution Cropland Data Layer 

(CDL) landcover maps to delineate forested area within a 1 km radius of each strip and 

then calculated the percentage of the forested landscape cover type. 

Bee Habitat Evaluation 

We assessed floral resource and bare ground availability monthly within each 

strip. The percent cover of each species in bloom and percent bare ground within a square 

meter quadrat were estimated every 5 meters along a 60 meter transect for a total of 10 
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quadrats. We then determined site plant diversity by summing the number of species in 

bloom among all sample dates (Table 1). 

Bee Sampling 

We sampled bees on sunny days when ambient temperatures were above 12.8° C 

and winds below 24 kph. To sample bees we use pan, blue-vane traps and emergence 

traps as well as non-targeted and targeted sweeping. 

 Standardized pan trapping utilized 3.5 oz (103.5 mL) white plastic Solo® cups 

(Droege et al. 2010; Roulston et al. 2007). We deployed a total of 12 cups (4 unpainted, 4 

painted either a standardized fluorescent blue or 4 yellow (Guerra Paint®)) in each 

sampling bout. Traps were placed at vegetation height in random color order every 5 

meters along a 60 meter transect. SpringStar® blue vane traps were placed at the end of 

each transect. Both pan and blue vane traps were partially filled with a weak detergent 

solution (Dawn®) and remained open for 6 hours. Trapped bees were transferred to 70% 

ethanol and returned to the lab for identification. 

 Targeted sweeping consisted of locating and capturing individual bees visiting 

flowers. Each individual bee caught using targeted sweeping was placed in a separate vial 

of ethanol and the flower on which the bee was caught was placed in a separate vial of 

70% ethanol for subsequent pollen analysis. Non-targeted sweeping, on the other hand, 

consisted of sweeping vegetation. Targeted and non-targeted sweeping each were 

conducted separately for 12 minutes adjacent to the trap line (6 minutes per 25 meters). 

Each type of sweeping was conducted twice via 2 sweepers for a total of 48 minutes of 

sweeping per transect (Bryant and Euliss unpub.). Bees caught by non-targeted sweeping 

were combined at each site for identification. 
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 Emergence trap design consisted of a white polyester mosquito net (H. 

Christiansen Co) pyramid with a 32 oz (946 mL) plastic screw top bottle with inverted 

funnel bottom. Insects emerging from the soil would climb the net pyramid and inverted 

funnel and fall into propylene glycol (Prestone® Lowtox Antifreeze). Two 1-meter 

square emergence traps were affixed to the ground within each contour or filter strip. 

Emergence traps were located along the 60 meter transects in areas of bare ground among 

standing vegetation. Prior to placement any standing vegetation that would be contained 

by the trap was cut and examined for evidence of use by stem nesting bees. In 2014, we 

installed the traps in late May and in 2015 in early May. Emergence traps remained in 

place throughout the growing season until late August and we collected their contents 

twice a month. 

Processing and Identification 

Field collected bees were prepared for identification following Droege’s protocol 

(Droege 2012). All bees were identified to species (Arduser 2014; Ascher and Pickering 

2015; Mitchell 1960; Mitchell 1962).  

Data Analysis 

Bee Abundance, Richness and Diversity Analyses 

 Total abundance and species, genera and family richness were analyzed across 

site and date as well as total abundance for each collection method using repeated 

measures mixed general linear models. We also analyzed the proportions of species 

represented by 10 or fewer individuals and proportions of species represented by 1 

individual across site using repeated measures mixed general linear models. (Proc Mixed 

in SAS; Littell et al. 2002). 
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We used Chao1 estimators to compare estimated species richness at each site and 

treatment (fossil package; Vavrek 2011; R Development Core Team 2010). Unlike 

rarefaction, Chao1, a non-parametric method, considers the number of rare species, 

singletons and doubletons (species represented by one or two individuals), collected to 

estimate the total number of species that may be present including estimations of 

undiscovered species (Chao 1984; Colwell and Coddington 1994). Sites were compared 

using 9 samples each and analyzed using mixed general linear models (Proc Mixed in 

SAS; Littell et al. 2002). We combined data for the Carroll county (sampled 4 times in 

2014) and Green county (sampled 5 times in 2015) sites to attain 9 samples. 

To test bee diversity differences among sites we calculated the Inverse Simpson’s 

Diversity Index (vegan package; Oksanen et al. 2016; R Development Core Team 2010) 

and then analyzed using a repeated measures mixed general linear model (Proc Mixed in 

SAS; Littell et al. 2002) to test diversity differences. All repeated measures mixed 

general linear models used year as the repeated measure and site as a random effect with 

post-hoc Tukey pairwise comparisons to compare differences among plant diversity 

levels. 

Site Characteristic Effects Analyses 

We used multiple regressions to assess relationships between site characteristics 

and bee diversity measures. To test the assumption of independence we ran Spearman-

Rank correlations on the following parameters: average percent floral cover, the number 

of blooming species found within quadrats over a year, the frequency of blooming 

species, the average percent bare ground and the percent forest cover within a 1km 

radius. If two variables had a correlation (r value) above 0.7, the variables were 
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considered correlated and one was chosen to be included in subsequent regression 

analyses (Proc Corr in SAS; Littell et al. 2002). Separate stepwise multiple regression 

analyses were run using total bee abundance and total bee species richness as y variables 

and non-correlated strip characteristics as x variables. The variable entry and exit 

parameters were set at 0.05 (Proc Reg in SAS; Littell et al. 2002). 

Bee Community Analyses 

 We used repeated measures mixed Poisson models (Proc Glimmix in SAS; Littell 

et al. 2002) to test effects on bee communities of site plant-diversity level for each 

sampling date with site as a random effect and post-hoc Tukey pairwise comparisons. 

We used Multi-response Permutation Procedures (MRPP) with Bray-Curtis 

(Sorensen) distance measures (PC-ORD) to test for differences in bee community 

compositions among plant diversity levels (McCune and Mefford 2006). MRPPs are non-

parametric and test for differences in species community compositions between two or 

more groups (McCune and Grace 2002). We averaged the total abundances of each 

species for each site among all sampling dates except for the Carroll county and Greene 

county sites which were only sampled for one year each.  

Bee Guild Analyses 

Following Sheffield et al. (2013a) individual bee species were placed into 1 of 7 

guilds: (1) solitary ground-nesters, (2) social ground-nesters, (3) honey bees, (4) bumble 

bees, (5) cavity-nesters, including excavators of pithy stems, (6) cleptoparasites and (7) 

social parasites. To examine guild representation within the bee community at each site 

we combined all individuals in each guild across each site per year.  We compared each 

guild’s abundance among sites using repeated measures mixed general linear models 
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after data were log(y+1) transformed (Proc Mixed in SAS; Littell et al. 2002). We used a 

Pearson’s chi-squared test to determine if the number of species in each guild were 

affected by plant diversity level (MASS package; Venables and Ripley 2002; R 

Development Core Team 2010).  

To test for correlations of the average bare ground percent cover at a site per year 

with the abundance of ground nesting bees captured in emergence traps we used general 

linear regression models (stats package; R Development Core Team 2010). We used 

Pearson’s chi-squared test to examine the association of cleptoparasite presence and 

presence of their respective host(s) (MASS package; Venables and Ripley 2002; R 

Development Team 2010). Spearman Rank-Correlation tests were run to test for 

correlations of cavity-nester abundance and species richness with the percent forested 

area within a 1km radius. Spearman’s Rank correlation tests not for a linear relationship 

but for the relationship that as X increases Y continually increases or decreases (Proc 

Corr in SAS; Littell et al. 2002). 

Bee-Plant Interactions Analysis 

 To elucidate the use of individual flowering species by bee species and to assess 

the range of generalization to specialization within the bee community we used the 

program NeD which tests nestedness (Strona and Fattorini 2014). We assembled a data 

matrix of interactions between each plant and bee species. We then reorganized the 

matrix from most general to most specialized species for both plants and bees and then 

calculated a matrix temperature metric (MT). The matrix creates an isocline and then 

finds Euclidian distances from each empty or filled cell to the isocline that is different 

from what would be found in a perfectly nested matrix. The MT is then compared against 
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the null model of proportional row and column totals to determine probabilities of a cell 

being occupied (interaction between a particular bee and plant species). In terms of 

biological significance, the null model finds the probability of there being an interaction 

between a particular bee and plant species based on the generalization (number of other 

interactions) with that bee species and that plant species. Comparing against the null 

model allowed for testing if the MT metric or (bee-plant network structure) is 

significantly different from only finding the probability of a cell being occupied 

(Bascompte et al. 2003).  

Results 

Bee Richness, Abundance and Diversity 

During 2014 and 2015 a total of 5,075 individual bees were collected and 

identified among 151 species. The majority of species were represented by 10 or fewer 

individuals at each site (between 70 and 87%) and at each level of plant diversity (Table 

2). Furthermore, among sites from 31 to 52% of bee species collected were singletons. 

Bee species collected only as singletons represented 48, 43 and 35% of total species 

collected at low, medium and high plant diversity sites, respectively. All bee species were 

not found at each site nor associated with each plant diversity level. However, total 

species richness did not differ significantly among plant diversity levels (F2,8.11=2.71, 

p=0.1253, Figure 2b). Bee species richness was significantly higher at high plant 

diversity sites from early May through June (Figure 3b). And, medium plant diversity 

sites supported significantly similar bee species richness to that at low diversity sites in 

early May and June and higher richness than low diversity sites in late May. 
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The Chao 1 richness estimates varied by site with no particular level of plant 

diversity supporting higher estimated bee species richness (Figure 4; Table 2). Chao1 

estimates of bee species richness provided overlapping 95% confidence intervals among 

the different plant diversity levels (Table 2). Chao 1 estimates of bee species richness 

indicate that 75, 39 and 43% of bee species remained undetected at low, medium and 

high diversity sites, respectively (Figure 2c).  

Total bee abundance was significantly greater at the high than low plant diversity 

sites (t7.29=3.65, p=0.0201, Figure 2a, Table 2) throughout the season (F4,73=53.14, 

p<0.0001; Figure 3a). However, bee abundance at medium plant diversity sites was 

significantly lower than that at high diversity sites earliest in the season only and 

significantly higher than at low diversity sites latest in the season. 

All collection methods caught bees and all showed consistent trends of low plant 

diversity sites collecting fewer bees than medium and high plant diversity sites. There 

were some significant differences in abundance among plant diversity levels. 

Specifically, blue vane traps and target sweeping significantly collected high abundances 

of bees at the high plant diversity sites in comparison to low plant diversity sites. Pan 

traps, non-target sweeping and soil emergence traps did not significantly collect higher 

abundances of bees among any plant diversity levels (Table 3).  

There were no significant differences among Inverse Simpson’s Diversity 

measures across plant diversity levels (F2,16=1.04, p=0.3764). 

Site Characteristic Effects 

 Certain site characteristics were correlated with one another whereas others were 

independent and could be included in multiple regression analyses. The average percent 
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floral cover, number of blooming species found within quadrats over a season, and 

frequency of blooming species were all highly correlated (Table 4). The frequency of 

blooming species and percent bare ground were also correlated and we chose to use the 

frequency of blooming species in our analysis due to the global necessity of floral 

resources for all bee species. Percent forest cover was not correlated with any other factor 

and also was included in the multiple regression analysis (Table 4). 

Overall, the best total bee abundance model contained only one predictor variable, 

frequency of blooming species, which explained 33.43% of the variation and which 

positively affected total bee abundance (R2=0.3343, R=0.5782, p=0.0076; Figure 5).  

Percent forest cover had a positive but statistically insignificant effect on total bee 

abundance (R=0.3291, p=0.1566) and was excluded from the model. We found that both 

the frequency of blooming species and percent forest cover were significant predictor 

variables of total bee species richness explaining 65.61% and 49.1% of the variation, 

respectively, and that both variables positively affected total bee species richness 

(frequency of blooming species: R2=0.6561, R=0.81, p=0.0109; percent forest: 

R2=0.4910, R=0.7007, p=0.0006; Figure 6).  

Bee Communities 

We found that low and high plant diversity sites supported statistically different 

bee communities as did medium and high diversity sites (T=-2.219, A=0.077, p=0.033; 

T=-1.772, A=0.05, p=0.046, respectively). Low and medium diversity sites however, did 

not support different native bee communities (T=-0.300, A=0.0088, p=0.362). 
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Bee Guilds 

 A minimum of 4 guilds were collected at any 1 site. Solitary and social ground 

nesters as well as bumble bees (Bombus spp.) were ubiquitous and 8 of 11 sites supported 

cleptoparasites (Table 5). Cavity nesters were found at all but one site, however, no stem 

nesting bees were found in any of the standing vegetation removed prior to emergence 

trap placement. We found no difference in the number of species representing each guild 

among plant diversity levels (χ2
18=14.5, p=0.698) except within cavity-nesting bees 

(Table 6). 

 There was a predominant trend of high, medium and low plant diversity sites 

supporting the highest, intermediate and lowest within-guild bee abundances, 

respectively (Figure 7).  Abundance of bumble bees (Bombus spp.) however, was highest 

at the medium diversity sites but the single individual social parasite was collected at a 

high diversity site. There were few significant differences of within guild bee abundance 

among plant diversity levels. Cavity nesting bees were significantly more abundant at 

medium and high diversity sites than low diversity sites (F2,8.1=10.40, p=0.0058; low and 

medium t8.32=4.46, p=0.0051; low and high t7.59=3.27, p=0.0271). Forested areas 

potentially provide resources for cavity nesting bees, but we did not find the percent 

forested cover within a 1km radius to be correlated with abundance of bees in this guild 

(r=0.291, p=0.2129; Figure 8). Social ground nesting bees were significantly more 

abundant at high than low plant diversity sites (F2,7.95=5.71, p=0.0290; t8.31=3.37, 

p=0.0239). There were no significant differences in abundance of solitary ground nesting 

bees, bumble bees (Bombus spp.) or cleptoparasites (F2,9.61=3.12, p=0.0719; F2,16=1.77, 

p=0.2022; F2,8.1=1.28, p=0.3279, respectively). 
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 Emergence traps collected 46 individual bees and 11 species representing both 

solitary and social ground-nesting guilds (Table 7). There was a significant direct positive 

relationship in the abundance of bees collected in emergence traps and the amount of bare 

ground present (R2=0.4105, F18=14.23, p=0.0014; Figure 9). 

Total species richness varied among sites for each bee guild but again there was a 

trend in which low plant diversity sites supported the fewest and high diversity sites the 

highest numbers of species within guilds. Again, bumble bees (Bombus spp.) species 

richness was the exception to the trend as the highest numbers were collected at medium 

plant diversity sites. Despite the predominant trend of greater bee species richness among 

guilds supported by greater plant diversity, there were few significant differences among 

levels of plant diversity. There was no significant difference in species richness of 

solitary ground nesting bees, social ground nesting bees, bumble or cleptoparasitic bees 

among plant diversity levels (F2,8.19=3.45, p=0.0818; F2,8.2=2.17, p=0.1753; F2,16=1.52, 

p=0.2491; F2,8.22=1.32, p=0.3178 respectively) (Figure 10). A total of 22 cleptoparasite 

and 1 social parasite species were collected among sites and we determined their 

presence to be highly dependent on host presence (χ2
22=38, p=0.1832; Table 8).  

Species richness among cavity nesting bees was significantly different among 

plant diversity levels (F2,8.42=7.05, p=0.0159). More species were supported at medium 

and high diversity sites than low diversity sites (low and medium t8.65=3.61, p=0.0156; 

low and high t7.88=2.87, p=0.0471) (Figure 10). The percent forested cover within a 1km 

radius again was not significantly correlated with cavity nesting species richness 

(r=0.313, p=0.1797; Figure 11). 
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Bee-Plant Interactions 

 The bee-plant interaction network in this study was determined to be nested with 

more generalized interactions and fewer specialized interactions. (Z=-2.965, RN=-0.287, 

p<0.01; Figure 12).  

Discussion 

 Our results show that the flowering vegetation present within a contour buffer or 

filter strip can influence native bee abundance and community composition but not 

necessarily richness. Consistent trends however, suggest high diversity sites may support 

higher abundances and numbers of species than low diversity sites. Similar results have 

been found in Europe (Kells et al. 2001; Marshall et al. 2006; Pywell et al. 2006). While 

diversity measures do not differ among plant diversity levels, there are differences in 

community compositions found at high diversity sites than low and medium diversity 

sites. Characteristics significantly associated with abundance and richness include the 

frequency of blooming species and the percent forest cover within a 1km radius of the 

strip. While abundance and richness varied for each of the different bee guilds, trends 

suggest that more floral resources support higher abundances and species of bees.  

Bee Richness, Abundance and Diversity 

 Researchers in Europe have been investigating the influence of planting grass and 

wildflower strips in agricultural fields on the pollinator diversity found in these strips. 

The European Union initiated the Agri-Environment Schemes (AES) to protect and 

promote bees and other pollinators (Haaland et al. 2011; Rollin et al. 2013). In simple 

landscapes, pollinator richness and abundance can be enhanced by increasing other 

biodiversity components using AES (Batary et al. 2011). Our study found numerous bee 
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species and individuals among all contour buffer and filter strips regardless of level of 

plant diversity, but the presence of flowers in the strips supported greater bee abundance 

than in strips without flowers. Species richness and diversity however, did not differ 

among plant diversity levels but there was a consistent trend.  

Even though bee abundance in this study was greater at high plant diversity sites, 

there were no significant differences in species richness or diversity among levels of 

plant diversity. There was a trend of higher numbers of bee species collected at higher 

plant diversity sites, however, the richness at one of the high diversity sites overlapped 

that more typical at low plant diversity sites and this level of variation resulted in 

identification of no statistical significance. 

While hedgerows are not contour buffer or filter strips, they are strips of land 

adjacent to crop fields that have the potential to provide habitat for native bees. Morandin 

and Kremen (2013) found that native bees had a higher species richness as well as more 

abundant uncommon species in hedgerows with native perennial plants in comparison to 

weedy, unmanaged edges, similar to our low diversity sites. In contrast, we found that all 

contour buffer and filter strips, regardless of plant diversity, supported high proportions 

of species represented by 10 or fewer individuals indicating high numbers of rare species 

were found at all sites.  

The low diversity sites in our study typically consisted of a monoculture of 

smooth brome grass (Bromus inermis Leyss). As a grass, B. inermis is wind pollinated 

and does not produce pollen collected by bees (McKone 1985). Our low plant diversity 

sites supported lower bee abundances than sites with better pollen resources. Studies in 

Europe have found similar results with grass-only strips. Even though there were some 
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bees present in grass-only strips, the addition of floral resources provide more habitat and 

forage (Kells et al. 2001; Marshall et al. 2006; Pywell et al. 2006). European Union 

studies on AES strips consisting of various flowering plant diversity mixes found that the 

more pollen and nectar available within or next to agricultural fields, particularly 

landscapes that were mostly simple (similar to Iowa’s landscape), greatly increased the 

abundance and species richness of pollinators in comparison to all crop fields or fields 

with grass-only strips (Haaland et al. 2011; Korpela et al. 2013; Pywell et al. 2006; 

Scheper et al. 2013).  

Plants only flower at certain times of the year whereas bees may only be present 

at certain times of the year based on their floral hosts (Olesen et al. 2008). Thus, as the 

growing season progresses, floral abundance and floral species present change along with 

the bee abundance and species present (Olesen et al. 2008; Rollin et al. 2015; Wolda 

1978; Wolda 1988). Due to changes in floral community composition throughout a 

growing season and plant community differences among our sites, a temporal change in 

bee communities across sites can inform which plant communities may be providing 

better habitat throughout the entire season or at different times of the seasons.  

In our study, species richness varied only early in the season. In May and June, 

species richness was greater in the high diversity sites. But from July through August 

species richness did not vary. Rollin et al. (2015) found similar results in blooming crop 

systems in Europe. Thus, the presence of more floral resources at the beginning of the 

season can influence the bee species present. Throughout the remainder of the season in 

our study, plant diversity level did not influence differences in species richness. This 

however, is where bias may come in with sampling techniques. Since there are little to no 



32 

 

floral resources in the low diversity strips, bees flying past may have mistaken the traps 

for flowers and landed in the strip even though it may not use that strip otherwise (Baum 

and Wallen 2011; Roulston et al. 2007). This would affect the results of the bee species 

actually present and utilizing the resources in the strip during different times of the 

growing season. 

We found differences in bee abundances to be more consistent throughout the 

season than species richness. From early May through August high plant diversity sites 

consistently supported significantly more bees than the low diversity sites whereas 

medium diversity sites were similar to either low or high diversity sites depending on the 

time of season. A study in the UK found similar results with bumble bees being 

consistently more abundant in ‘grass and wildflower’ field margins than any other field 

margin treatment, such as tussock grass and cropped margins, whereas species richness 

was relatively similar across treatment (Meek et al. 2002).  

Some methods used in this study to collect bees specifically capture individuals 

that are utilizing the strips. Both non-targeted and targeted sweeping collected bees that 

were on the flowers either collecting pollen and nectar or simply resting such as 

cleptoparasites in close proximity to host nests in the ground. Colored pan traps provide 

signals of attraction similar to that of flowers and may capture bees in flight (Roulston et 

al. 2007). Pan trapped bees may not have been using resources in the strip. Pan traps are 

effective when there are few floral resources, but have been found to undersample bee 

species richness but not abundance when there are abundant floral resources present 

(Baum and Wallen 2011; Roulston et al. 2007). In our study, pan traps did not collect 

significantly different abundances of bees among plant diversity levels. Trends across all 
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collection methods however, suggest that high diversity sites, with more abundant and 

available resources, collected higher abundances of bees than the low plant diversity 

sites. Bees collected with targeted sweeping were more abundant at the high diversity 

strips compared to the low diversity strips. Non-target sweeping though, showed no 

significant differences. The consistent trends along with a higher abundance of bees 

collecting using targeted sweeping, suggest that more bees were present in the high plant 

diversity sites than the low plant diversity sites.  

Site Characteristic Effects 

Certain strip characteristics were found to be correlated with abundance and 

species richness. The frequency of blooming species was found to be correlated with both 

abundance and richness. Frequency refers to how evenly a blooming species occurred 

within a strip and as frequency increased, so did bee abundance. These results indicate 

that not only the abundance of a blooming species is important but that more evenly 

distributed blooms within a strip are more beneficial than patches of flower. More 

blooming individual plants can support a higher abundance of bees.  

The frequency of blooming species and percent forest cover within a 1km radius 

was correlated with bee species richness. This indicates that in our study, as the 

frequency of blooming species increased so did the number of bee species. We found that 

as the percent forest increased, the bee species present increased as well. Forested area 

can provide additional floral resources in an area as one study found that forested region 

near apple orchards had spring flowers that coincided with the bloom of apple flowers 

those orchards then supported a higher bee abundance and species richness (Watson et al. 

2011). Roulston and Goodell (2011) discuss several instances where various bee species 
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require wood or cavities for nesting that are more frequently found in forested areas. As 

prairie or grass strips may not provide those resources, nearby forested area could mean 

bee species that use such areas are travelling from the wooded areas to the strips for floral 

resources. But, if those nesting resources are not nearby a strip, those species may not be 

utilizing that strip. In our study, we found that even though forested area increased 

overall bee species richness it did not significantly influence the abundance and richness 

of cavity-nesting bees. 

One factor that was not examined in this study but could influence abundance and 

bee species richness is the age of the strip. Young contour buffer or filter strips may have 

a different plant community than an older strip due to competition, establishment and 

recruitment of other plant species. A study looking at a chronosequence of restored 

grasslands that included both grasses and forbs found that forbs decreased significantly 

over time with near zero percentages of forb cover at sites of 12 years in age (Baer et al. 

2002). This could indicate that older strips, while still populated with a few forb species, 

may be dominated by grasses than a strip of similar plant diversity that was more recently 

established.  This difference in plant community structure could differentially provide 

food resources as well as nesting resources, such as bare ground, for bees. Our study did 

find that forb abundance was positively correlated with the percent bare ground in the 

strip indicating that the differences in plant community can provide varying amounts of 

nesting resources for ground nesting bees in particular.  

Bee Communities 

The bee communities found in our study at low plant diversity sites were 

significantly different than those at high and medium diversity sites. The flowering 
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vegetation present at any given site was the result of the diversity originally plant under 

the CRP plan. Thus, not every landowner who had forbs in their strip had the same 

flowering species. It is thought that the floral community can influence the bee 

community (Schaffers et al. 2008). Harmon-Threat and Hendrix (2015) found 4 

flowering species to be particularly attractive to bees and are abundant across tallgrass 

prairie remnants. All four of these plants at all high diversity sites and among medium 

diversity sites however, not every medium site had all four species. These four plant 

species would attract similar bee species regardless of site within the tallgrass prairie 

region. However, medium diversity sites contained other plant species potentially 

attracting different bee species. This would contribute to a potentially different bee 

community composition than that of high diversity sites. However, this was not the case 

in our case. Low diversity sites on the other hand, did not have any of the plant species. 

Without those plant species, many bee species may not be attracted to the strip resulting 

in a different community composition than that of the medium and high diversity sites.  

Bee Guilds 

The overall trends among all guilds, except bumble bees (non-parasitic Bombus 

spp.), suggest that high plant diversity levels support a higher abundance and species 

richness than low diversity sites. High plant diversity sites may be consistently providing 

more available and abundant floral and nesting resources than low diversity sites for the 

majority of guilds. As guilds require different nesting resources, high plant diversity sites 

appear to be more diverse with the resources available for use than low diversity sites. 

Bumble bees do not follow this trend as the most individuals and species were found in 



36 

 

the medium diversity level. This is possibly due to one medium diversity level site where 

more bumble bees were found frequenting the strip in comparison to other sites.  

The vast majority of the 200+ bee species that persist in Iowa are ground nesters 

and prefer to nest in bare, undisturbed soil (Roulston and Goodell 2011). In this study, the 

percentage of bare ground provided an estimate of nesting resources available for both 

solitary and social ground nesting bees. However, percent bare ground was correlated 

with the frequency of blooming species which was highly correlated with the number of 

blooming plant species in strips. It is thought then, that high plant diversity sites and sites 

with a high frequency of blooming species provided more nesting resources for ground 

nesting bees than low diversity sites. However, we found that high diversity sites did not 

significantly support a higher abundance or number of species of solitary ground nesting 

bees nor a higher species richness of social ground nesting bees. The high diversity sites 

did significantly support a higher abundance of social ground nesting bees. The positive 

trends among abundance and richness for both solitary and social ground nesting bees 

signify that the higher diversity sites supported higher numbers of abundance and 

richness for both solitary and social ground nesting bees. 

Bare ground, though, is not the only factor that contributes to a species’ nesting 

presence. Other factors such as slope, soil compaction and soil type influence whether 

ground nesting bees nest in the area (Grundel et al. 2010; Potts and Willmer 1997; 

Sardinas and Kremen 2014). These other factors were not measured in this study but 

would be important considerations in future research. 

Emergence traps are used to monitor bees nesting in the ground. The bees 

collected using those traps are part of the community from the previous year and thus 
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may be different from the current year’s community reflected in the collections from 

other traps and sweeping. Sardinas and Kremen (2014) found that the community 

composition of emerging ground nesting bee was different from the flying bee 

community composition (bee species collected using pan traps and sweeping) found at 

the same site. As studies have shown (Williams et al. 2001) that bee community 

compositions can highly vary from year to year, it follows that the nesting community 

may be different from the flying community. Our study sampled bees over two years 

precluding tests of effects of the community of emerging ground nesting bees on the adult 

bee community composition the following year. In 2015, more bee individuals and 

species were collected in emergence traps than in 2014. The flying bee community in 

2014 was very abundant which may have contributed to the high number of ground 

nesting species and individuals caught in emergence traps in 2015. However, with ninety-

six percent of individuals caught in emergence traps in 2015 found in the flying 

community at the same site in 2014 and 97% of the individuals caught in emergence traps 

in 2015 found in the flying community in 2015, the emerging community appears similar 

to the flying communities of both years.  

Forty-five of 46 individuals caught in emergence traps were collected in sites 

where the vegetation was sparse and conditions appeared ideal for ground nesting bees. 

The majority of individuals found nesting were in the Halictidae family. Most of the 

individuals caught were from one site and 8 species were collected. This site had the most 

bare ground of all sites.  

Bees were not necessarily nesting at a site given the presence of bare ground. But, 

there was a positive correlation between the abundance of ground nesting bees collected 
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in emergence traps and the amount of bare ground present, indicating that bare ground is 

an important factor in ground nesting bee habitat use. However, due to financial and time 

constraints, only 2 emergence traps were set out at each site, covering a total of 2 square 

meters in each strip indicating that the majority of every contour buffer or filter strip was 

not being monitored for ground nesting bees. It is possible there were bees nesting in 

other locations of the strips which were not collected. Sardinas and Kremen (2014) came 

to similar conclusions regarding the small amount of area occupied by emergence traps 

even when numerous emergence traps were used at a single location. 

Cavity-nesting bees utilize sites in pre-existing holes, rotten logs or twigs (Potts et 

al. 2005; Roulston and Goodell 2011). These types of resources are not typically found in 

grass strips unless there are other plant species with stems of sufficiently large diameter. 

In our study, cavity-nesting were more abundant and specious at medium and high plant 

diversity sites than low diversity sites. This may indicate that cavity-nesting bees are 

generally not able to use contour buffer or filter strips of all-grass or low plant diversity 

due to the lack of appropriate and sufficiently close nesting resources. Bennett et al. 

(2014) found that bees chose habitat that had available floral resources but also were in 

close proximity (based on foraging ranges) to nesting substrate. While forested areas 

potentially provide nesting resources, in the form of rotten logs or twigs, we hypothesized 

that more forested cover near a strip would increase the abundance and richness of 

cavity-nesting bees. This however, was not the case. The percent forest cover within a 1 

km radius of a strip did not influence bee abundance or richness. Instead, our results 

indicate that the floral and potentially nesting resources within the strip influence the 

presence of cavity-nesting bees. 
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In our study, with few exceptions, whenever a cleptoparasitic species was present, 

its host was present as well. Previous studies have suggested that the presence of 

cleptoparasites can be used as a proxy for the status and health of the bee community in 

regards to the community diversity and stability (Sheffield et al. 2013b). The more 

diverse the bee community, the more likely it is able to withstand disturbances, with the 

parasitic species the first to be affected. In healthy ecosystems, parasites play a stabilizing 

role by reducing the reproductive output of the host by either killing the host egg or larva 

(Rozen 2001). Some cleptoparasites are generalists and can utilize several hosts whereas 

others are specialists. Specialist parasites have been shown to increase biodiversity by 

reducing the ability of the host to become highly abundant and disproportionately use the 

floral resources in an area reducing exploitative competition. Since many parasites are 

species specific, they also reflect the overall bee community (Hudson et al. 2006). In our 

study, the majority of cleptoparasitic species were collected at sites which also supported 

their respective hosts. There were no significant differences between the abundance of 

cleptoparasites supported among plant diversity levels. However, there was a trend 

towards medium and high diversity sites supporting a higher abundance of 

cleptoparasites than low diversity sites. This may indicate a high level of bee community 

health and stability in the higher plant diversity levels. 

In addition to cleptoparasites, there are social parasitic bees. Only one social 

parasite was found over the course of the study: B. citrinus. This individual was found at 

a single high plant diversity site in 2014. This is a specialized parasite with only two 

hosts having been reported (Fisher 1985): B. vagans and B. impatiens, the latter of which 

was collected at the same site as well. In addition, a high number of cleptoparasites were 
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present at that same site and overall site bee richness was high. The positive trends 

among increasing plant diversity of species richness of social parasites and 

cleptoparasites are similar to the trends shown in almost all other bee guilds. The overall 

species richness also follows this trend of higher plant diversity levels supporting higher 

species richness. Thus, the presence of parasitic bee species may inform the overall 

diversity of the entire bee community as well as indicating levels of community stability 

and resilience. 

The variety of bee guilds found at a site can show the strip’s ability to support a 

variety of bees (Sheffield et al. 2013a). Overall, it can be said that contour buffer or filter 

strips with high diversity vegetation mixes tend to support higher levels of abundance and 

richness across all bee guilds, except perhaps bumble bees. 

Bee-Plant Interactions 

 Floral resource preferences vary among bee species and not all species utilize the 

same flowering species. Some bee species are generalists, visiting a wide variety of 

flowers whereas others are specialized and primarily visit flowers of a single plant 

species or genus (Decourtye et al. 2010; Tepedino 1979). In a bee-plant community, the 

interactions between individual bee and plant species may range from completely random 

to being highly nested. To be perfectly nested, all generalist bee species would interact 

with the more generalist and a larger number of plant species whereas the specialist bee 

species have fewer bee plant interactions (Bascompte 2003). In our study, the bee-flower 

species interaction network was not random with the majority of interactions between 

generalist bees and flowers and few specialists. These suggests that plant mixes 
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containing generalist forbs could support higher bee abundance and species richness 

while specialist flowers could be beneficial if specialist bees are present.  

High plant diversities in contour buffer and filter strips are able to provide more 

diverse generalist and specialist floral resources supporting a higher bee abundance and 

species richness. The high plant diversity strips are providing resources for those bee 

communities throughout an entire season, from early spring to fall. High plant diversities 

can also provide more nesting resources for ground nesters than low diversity sites. 

Almost all bee guilds, including ground nesters, follow the same trend with higher plant 

diversities supporting higher abundance and species richness within the bee guilds. The 

presence of cleptoparasitic bees in particular, are dependent on their host presence, such 

as various ground nesting bees, and can indicate bee community health and stability. As 

cleptoparasites tend to be more abundant and specious in higher diversity levels along 

with other bee guilds, contour buffer and filter strips of higher plant diversity levels may 

have high bee community stability. Overall, our study confirms the importance of high 

plant diversity in contour buffer or filter strips, to support higher bee abundance and 

species richness and the resulting resilience this diverse community provides. 

Conclusions 

 In this study, measures of bee community abundance and richness were found to 

be highest in contour buffer or filter strips with the highest flowering plant diversity 

indicating that such sites provided better habitat for bees. And, bee community 

composition differed significantly between high flowering plant diversity sites and low 

plant diversity sites and provided insight into which species are more attracted to those 

sites. The frequency of blooming species was found in greater proportion in strips with 
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high plant diversity and this likely contributed to the higher bee abundances and species 

richness among these strips. Overall trends across all bee guilds, except bumble bees, 

suggest that high plant diversity levels support a higher abundance and species richness 

than low diversity sites. Higher diversities of flowers can increase available resources 

early and throughout the season when compared to the lower diversity mixes. Within the 

matrix of Iowa’s simplified landscape of vast tracks of monoculture agriculture, contour 

buffer and filter strips with as few as 15 species of tallgrass prairie forbs and the 

increased area of bare ground associated with this level of plant diversity were able to 

provide key habitat resources supporting a robust community of native bee species. 
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TABLES 

 

Table 1. Native forb species blooming in 2014 and 2015 within contour buffer and filter 

strips of differing plant diversity levels and the month of bloom. 

 

Plant Diversity Blooming Species Month Blooming 

Low Diversity 

Asclepias syriaca June, July, August 

Echinocystis lobata August 

Solidago spp. August 

  

  

  

  

  

  

  

  

  

  

Medium Diversity 

  

  

  

  

  

  

  

  

  

  

  

Apocynum cannabinum June, July 

Asclepias syriaca June, July, August 

Bellis perennis July, August 

Chamaecrista fasciculata August 

Dalea purpurea July, August 

Desmodium canadense July 

Echinacea pallida June, July 

Erigeron strigosus Late May, June, July, August 

Heliopsis helianthoides August 

Lactuca serriola August 

Monarda fistulosa July, August 

Potentilla argentea June, July 

Potentilla arguta June 

Solidago altissima August 

Ratibida pinnata July, August 

Rudbeckia hirta June, July, August 

Solidago rigida August 

Solidago spp. August 

Symphyotrichum novae-angliae July, August 

Verbena stricta July 

Verbena urticifolia Late May, July, August 

Zizea aurea Late May 

 

 

 

High Diversity 

 

 

 

Anemone canadensis Late May, June 

Apocynum cannabinum June, July 

Asclepias syriaca June, July 

Asclepias tuberosa June, July 

Baptisia alba June, July 

Chamaecrista fasciculata July, August 

Coreopsis spp. June 

Dalea purpurea June, July, August 
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Table 1 cont. 

High Diversity Echinacea pallida June, July 

  Erigeron strigosus June, July, August 

  Euphorbia corollata July, August 

 Gaura biennis August 

  Gentiana alba August 

  Helianthus grosseserratus June, July, August 

  Helianthus maximiliani July, August 

  Heliopsis helianthoides July, August 

  Lespedeza capitata August 

  Liatris pycnostachya July 

  Monarda fistulosa July, August 

  Oenothera biennis July, August 

  Phlox pilosa June 

  Potentilla argentea June 

  Potentilla arguta June, July 

  Ratibida pinnata July, August 

  Rudbeckia hirta June, July, August 

  Ruellia humilis July 

  Silphium perfoliatum July, August 

  Solidago rigida August 

  Solidago spp. August 

  Symphyotrichum novae-angliae July, August 

  Symphyotrichum pilosum Late May 

  Tradescantia spp. Late May, June 

  Verbena stricta June, July, August 

  Vernonia fasciculata August 

  Zizea aurea Early May, Late May, June 
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Table 2. The number of bee individuals and species observed at each site; the number of species and proportion of species with 10 or 

fewer specimens collected; the number of species and proportion of species with one individual represented; the Chao1 species 

richness estimate with 95% CI from 9 samplings at each site of either contour buffer and filter strips across 2014 and 2015 (low 

diversity (LD): 0-3 forb species; medium diversity (MD): 5-13 forb species; high diversity (HD): greater than 15 forb species). 

Different letters within a column indicate statistically significant differences. (Mixed General Linear Models; Proc Mixed in SAS; 

Littell et al. 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

*High diversity site 3 and 4 data were combined for the Chao1 bee species richness estimate. 

 

 

 

 

 

 

 

Site Plant 

Diversity 

Level 

No. Bee 

Individuals 

No. Bee 

Species 

Collected 

No. and Proportion 

Species with ≤10 

Individuals 

No. and Proportion 

Singleton Species  

Chao 1 Bee Species Richness  

(95% confidence interval) 

Bo Low 159 
830 

a 

23 
54 

a 

19 (0.83) 
42 (0.78) 

a 

11 (0.48) 
26 (0.48) 

a 

  38 (32-44) 
223 (169-278) 

a 
Mc Low 352 29 23 (0.79) 13 (0.45)   57 (46-67) 

Sh Low 319 34 27 (0.79) 16 (0.47)   76 (62-91) 

El Medium 613 

1959 

ab 

85 

108 

a 

74 (0.87) 

89 (0.82) 

a 

43 (0.51) 

47 (0.43) 

a 

162 (146-177) 

182 (165-199) 

a 

Ka Medium 566 43 35 (0.81) 19 (0.44)   88 (74-102) 

Pl Medium 407 36 28 (0.78) 16 (0.44)   68 (57-78) 

Sl Medium 385 33 26 (0.79) 11 (0.33)   43 (39-47) 

Cr High 552 

2153 

b 

44 

91 

a 

31 (0.70) 

67 (0.74) 

a 

14 (0.32) 

35 (0.39) 

a 

  76 (65-88) 

159 (143-175) 

a 

NS High 978 69 50 (0.72) 29 (0.42) 116 (104-129) 

Gr High 532 45 35 (0.78) 14 (0.31) 
100 (86-114)* 

Pe High 212 29 24 (0.83) 15 (0.52) 

5
2
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Table 3. The abundance of bees collected in each collection method for each plant 

diversity level. Different letters within a column indicate statistically significant 

differences. (Mixed General Linear Model; Proc Mixed in SAS; Littell et al. 2002). 

 
Pan 

Traps 

Blue 

Vane 

Traps 

Non-Target 

Sweeping 

Target 

Sweeping 

Soil 

Emergence 

Traps 

Low 575 a 205 a 40 a 9 a 1 a 

Medium 1056 a 361 ab 387 a 106 a 38 a 

High 1146 a 407 b 478 a 233 b 9 a 

 

 

 

Table 4. Spearman-Rank Correlation coefficients and p-values for the average percent 

floral cover in a strip, the number of blooming species found within quadrats over a year, 

the frequency of blooming species in a strip. And Spearman-Rank Correlation 

coefficients and p-values for the frequency of blooming species in a strip, the average 

percent bare ground in a strip and the percent forest cover within a 1km radius of a strip. 

(Spearman Rank-Correlation; Proc Corr in SAS; Littell et al. 2002). 

Spearman Correlation Coefficients, N=20 

Prob > |r| under H0: Rho=0 

 

Percent 

Floral 

Cover 

Number of 

Blooming 

Species 

Frequency of 

Blooming 

Species 

Percent 

Bare 

Ground 

Percent 

Forest in a 

1 km radius 

Percent 

Floral Cover 
1.00000 

0.86363 

p<0.0001 

0.93524 

p<0.0001 

n/a n/a 

Number of 

Blooming 

Species 

0.86363 

p<0.0001 
1.00000 

0.93157 

p<0.0001 

n/a n/a 

Frequency of 

Blooming 

Species 

0.93524 

p<0.0001 

0.93157 

p<0.0001 
1.00000 

0.72910 

p=0.0003 

0.55703 

p=0.0107 

Percent Bare 

Ground 
n/a n/a 

0.72910 

p=0.0003 
1.00000 

0.43321 

p=0.0564 

Percent 

Forest in a 

1km radius 

n/a n/a 
0.55703 

p=0.0107 

0.43321 

p=0.0564 
1.00000 
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Table 5. Bee abundance and number of species in each bee guild at each site across both years. (LD=low diversity; MD=medium 

diversity; HD=high diversity). 

  Bee Guild 

Site 
Plant Diversity 

Level 

Solitary 

Ground Nester 

Social Ground 

Nester 

Honey 

bees 

Bumble 

Bees 

Cavity-

Nesters 
Cleptoparasites 

Social 

Parasites 

Bowman LD 115/13 32/5 7/1 5/4 0/0 0/0 0/0 

McClellan LD 157/15 184/6 0/0 7/4 3/3 1/1 0/0 

Sheller LD 163/19 136/4 0/0 12/5 6/4 2/2 0/0 

Elkader MD 195/39 250/11 83/1 11/6 55/15 19/13 0/0 

Kaldenberg MD 185/22 336/7 2/1 12/4 31/9 0/0 0/0 

Plunkett MD 126/20 188/6 61/1 26/5 4/2 2/2 0/0 

Sloan MD 151/14 180/5 0/0 11/3 30/9 2/2 0/0 

Cretsinger HD 176/22 281/6 3/1 8/4 83/10 1/1 0/0 

NealSmith HD 394/34 486/7 14/1 9/4 58/11 16/11 1/1 

Greving HD 161/23 327/7 0/0 6/3 32/8 6/4 0/0 

Peckumn HD 73/13 114/6 14/1 2/2 7/5 2/2 0/0 
 

Table 6. The number of species in each bee guild in each plant diversity level across both years. The same letters within a row indicate 

no statistical significant difference. (Pearson’s Chi-Square; MASS package; Venables and Ripley 2002; R Development Core Team 

2010). 

 Bee Guild no. species (% total species)  

Plant 

Diversity 

Level 

Solitary 

ground 

nesters 

Social 

ground 

nesters 

Honey 

bees 

Bumble 

bees 

Cavity 

nesters 

Clepto-

parasites 

Social 

parasites 

Total 

species 

Low 27 (.50)a 8 (.15)a 1 (.02)a 8 (.15)a 8 (.15)a 2 (.04)a 0a 54 a 

Medium 55 (.51)a 10 (.09)a 1 (.01)a 8 (.07)a 18 (.15)b 16 (.15)a 0a 108 a 

High 40 (.44)a 9 (.10)a 1 (.01)a 6 (.07)a 21 (.23)b 13 (.14)a 1 (.01)a 91 a 

5
4
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Table 7. Bee species caught in emergence traps in each strip, each year (1 is 2014 and 2 is 2015), and overall abundance of that 

species in that year caught in emergence traps at that site. Sites are characterized as low diversity (LD): 0-3 forb species; medium 

diversity (MD): 5-13 forb species; and high diversity (HD): >15 forb species. Guilds are characterized as GN: ground-nester; SolGN: 

solitary ground-nester; SocGN: social ground nester. 

Plant 

Diversity/Site Year Bee Species Abundance Guild 

LD - Bo 2 Lasioglossum Dialictus 1 SocGN 

MD - El 

 

1 Augochloropsis fulgida 2 SolGN 

1 Halictus confusus 5 SocGN 

1 Lasioglossum Evylaeus truncatum 7 SocGN 

1 Lasioglossum spp. 2 GN 

1 Melissodes bimaculata 1 SolGN 

2 Andrena robertsonii 1 SolGN 

2 Andrena spp. 3 SolGN 

2 Halictus confusus 1 SocGN 

2 Lasioglossum Dialictus 12 SocGN 

2 Melissodes bimaculata 1 SolGN 

MD - Pl 2 Augochlorella spp. 1 SocGN 

HD - Cr 
2 Lasioglossum Dialictus 1 SocGN 

2 Melissodes trinodis 1 SolGN 

HD - NS 
1 Melissodes bimaculata 1 SolGN 

2 Lasioglossum Dialictus 1 SocGN 

HD - Pe 
2 Agapostemon virescens 4 SolGN 

2 Lasioglossum Dialictus 1 SocGN 

5
5
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Table 8. Cleptoparasite (and one social parasite) present at each site, the cleptoparasite host, and the presence of the host at the site.  

(GO=grass only; LD=low diversity; MD=medium diversity; HD=high diversity). 

No. 

Spp 

No. 

unique 

spp 

Plant 

Diversity/Site 
Cleptoparasite Host 

Presence of 

Host 

0 0 LD - Bo None   

1 0 LD - Mc Stelis spp. Megachilidae Family Yes 

2 0 LD - Sh 
Triepeolus lunatus Melissodes bimaculata Yes 

Triepeolus spp. Melissodes spp. Yes 

7 3 MD - El 

Coelioxys rufitarsis Megachile latimanus Yes 

Nomada articulata Agapostemon virescens Yes 

Nomada australis Agapostemon spp. Yes 

Nomada denticulata Andrena spp. Yes 

Nomada depressa Andrena spp. Yes 

Nomada illinoensis Andrena spp. Yes 

Nomada imbricata possibly Andrena barbara No 

Nomada integerrima Andrena spp. Yes 

Nomada parva Andrena spp. Yes 

Nomada spp. Andrena spp. Yes 

Sphecodes spp. Halictus spp. and Lasioglossum spp. Yes 

Triepeolus lunatus Melissodes bimaculata Yes 

0 0 MD - Ka None   

2 0 MD - Pl 
Nomada articulata Agapostemon virescens Yes 

Sphecodes spp. Halictus spp. and Lasioglossum spp. Yes 

 

 

 

5
6
 



57 

 

Table 8 cont.  

2 0 MD - Sl 
Nomada denticulata Andrena spp. Yes 

Nomada depressa Andrena spp. Yes 

1 0 HD - Cr Nomada spp. Andrena spp. Yes 

11 7 HD - NS 

Bombus citrinus   

(Social Parasite) 
Bombus impatiens Yes 

Coelioxys octodentata Megachile brevis Yes 

Coelioxys sayi Megachile mendica; Megachile brevis No; Yes 

Nomada articulata Agapostemon virescens Yes 

Nomada spp. Andrena spp. Yes 

Nomada superba Eucera hamata Yes 

Triepeolus donatus Melissodes desponsa Yes 

Triepeolus helianthi Melissodes agilis; Melissodes trinodis Yes; Yes 

Tripeolus lunatus Melissodes bimaculata Yes 

Triepeolus nigrihirtus Melissodes spp. Yes 

Triepeolus simplex Melissodes communis Possibly 

4 1 HD - Gr 

Coelioxys sayi Megachile mendica; Megachile brevis No; Yes 

Nomada articulata Agapostemon virescens Yes 

Triepeolus concavus Svastra obliqua No 

Triepeolus lunatus Melissodes spp. Yes 

2 0 HD - Pe 
Nomada articulata Agapostemon virescens Yes 

Nomada depressa Andrena spp. Yes 

 

 

 

 

5
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FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study site locations and plant diversity type: low diversity (0-3 forb species), medium diversity (5-13 forb species) 

and high diversity (>15 forb species). 

Low Diversity 

Medium Diversity 

High Diversity 

2014 
2015 
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Figure 2. (A) Total bee abundance, (B) total bee species richness and (C) Chao 1 species 

richness estimate for each plant diversity level across 2014 and 2015 in contour buffer 

and filter strips with standard error bars. The letters above the error bars indicate 

significance; sharing the same letter indicates no significant difference. (Mixed General 

Linear Model; Proc Mixed in SAS; Littell et al. 2002). 

 

 

 

A B 

C 
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Figure 3. (A) Total bee abundance and (B) total bee species richness supported in each 

plant diversity level during each sampling period across a growing season in contour 

buffer and filter strips. The letters below each box indicates significance within that 

sampling period; sharing the same letter indicates no significant difference. (Mixed 

General Linear Model; Proc Glimmix in SAS; Littell et al. 2002). 

 

 

A 

B 



61 

 

 
Figure 4. Chao1 species richness estimate for each site calculated after 9 samples from 

each site with 95% confidence intervals indicated. (Chao1 estimates; Fossil package; 

Vavrek 2011; R Development Team 2010).  

 

 

 

 
Figure 5. Regression of the total bee abundance versus the frequency of blooming species 

within contour buffer and filter strips in a year (R2=0.3343, R=0.5782, p=0.0076). 2014 

points are represented as circles while triangles are from 2015. (Multiple Regression; 

Proc Reg in SAS; Littell et al. 2002). 
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Figure 6. Multiple regression of total bee species richness versus the frequency of blooming species (R2= 0.6561, R=0.81, p=0.0109) 

and the ranked percent forest in a 1km radius (R2=0.4910, R=0.7007, p=0.0006). (Multiple Regression; Proc Reg in SAS; Littell et al. 

2002).

6
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Figure 7. Total bee abundance in each plant diversity level for each guild of bees (solitary 

ground nesting bees, social ground nesting bees, bumble bees, cavity nesting bees and 

cleptoparasitic bees) across 2014 and 2015 in contour buffer and filter strips with 

standard error bars. The letters above the error bars indicate significance; sharing the 

same letter indicates no significant difference. (Mixed General Linear Model; Proc Mixed 

in SAS; Littell et al. 2002). 
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Figure 8. Scatterplot of ranked cavity nesting bee abundance within a year versus ranked 

percent forested area in a 1km radius of a contour buffer or filter strip using Spearman’s 

Rank correlation (S=942.67, rho=0.2912255, p=0.2129). 2014 points are represented as 

circles whereas triangles are from 2015. (Multiple Regression; Proc Corr in SAS; Littell 

et al. 2002). 

 
Figure 9. Linear regression of the average amount of bare ground at a site in 2014 

(circles) and 2015 (triangles) versus the number of individuals found in emergence traps 

at that site (R2=0.4105; F18=14.23; p=0.0014). (Linear Regression; Stats package; R 

Development Team 2010). 
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Figure 10. Total bee species richness in each plant diversity level for each guild of bees 

(solitary ground nesting bees, social ground nesting bees, bumble bees, cavity nesting 

bees and cleptoparasitic bees) across 2014 and 2015 in contour buffer and filter strips 

with standard error bars. The letters above the error bars indicate significance; sharing the 

same letter indicates no significant difference. (Pearson’s Chi-Square; MASS package; 

Venables and Ripley 2002; R Development Core Team 2010). 
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Figure 11. Scatterplot of ranked cavity nesting species richness within a year versus 

ranked percent forested area in a 1km radius of a contour buffer or filter strip using 

Spearman’s Rank correlation (S=914.28, rho=0.312573, p=0.1797). 2014 points are 

represented as circles while triangles are from 2015. (Spearman’s Rank correlation; Proc 

Corr in SAS; Littell et al. 2002). 

 

 

Figure 12. Nestedness matrix of bee-plant interactions. Plant species are the rows and bee 

species the columns. The upper left hand corner of the graph refer to the most general 

(most interactions with this particular bee or plant species) interactions with this 

particular species. Points beyond this corner represent more specialized interactions 

between bee species and plant species. Matrix temperature metric analysis was run in 

NeD and compared against the CE null model (Strona and Fattorini 2014). 
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Abstract 

Predatory ground beetles are generalist predators in corn and soybean fields that 

likely prey on various agricultural pests. Variation in body size among ground beetle 

species assemblages can contribute to their functional diversity within an agricultural 

system thus a more diverse beetle community may provide better crop pest suppression. 

In Iowa, contour buffer and filter strips are potential areas of habitat to which beetles can 

retreat from highly disturbed agricultural fields. This study used pitfall and emergence 

traps to assess assemblages of predatory ground beetles among contour buffer and filter 

strips of varying plant diversities. Beetles were identified to tribe and pronotum width 

and body, elytron and hind femur length measurements made. Body length was used as a 

proxy for body size when examining community composition. Taxonomically, there were 

no significant differences in abundance, tribe richness, or Inverse Simpson’s Diversity 

among different plant diversities. The majority of beetles at each site were of medium or 

large sizes with few to no small or very small sized beetles. Overall, trends showed floral 

diversity positively influenced the probability of ground beetle assemblages containing 
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beetles from more size classes. While functional diversity is similar regardless of floral 

diversity, the small body sizes are missing among the Iowa agricultural landscape sites 

we examined.  

Introduction 

Ground beetles in the family Carabidae are generalist predators and have been 

demonstrated to provide the important ecosystem service of reducing agricultural pests 

(Menalled et al., 1999; Woodcock et al., 2010). Carabid beetles occur in corn and 

soybean fields as well as other agricultural crop fields and have been demonstrated to 

serve as an indicator of the overall natural enemy community (Larsen et al., 2003; 

Menalled et al., 1999; Woodcock et al., 2014). Although Carabids are considered 

generalists, individual species differentially utilize different sizes and life stages of 

various insect prey contributing to the functional diversity of the predatory beetle 

community (Jelaska et al., 2014). 

 For example, variation in beetle body size has been correlated with feeding rate; 

the larger the body, the more prey an individual beetle consumes (Kromp, 1999). Also, 

Carabid beetle body size is a contributing factor as to which prey or prey life stage is 

predated. For example, small Carabids are more proficient predators of Curculionid eggs 

whereas larger Carabids primarily will consume pupal and adult Curculionids. Among 

other types of prey, larger beetles more frequently consume lepidopteran larvae and pest 

coleopterans (Kromp, 1999). A shift towards the presence of only small or large Carabids 

could reduce the beetle assemblage impact on the agricultural pest community that may 

be present.  
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Although size variation within a beetle community could benefit crop production 

through enhanced pest suppression, one study has shown that as agricultural and human 

land use has intensified over the last 50-100 years in Belgium, Denmark and the 

Netherlands, few large beetle species remain in agricultural systems. This indicates a 

decrease the functional diversity of the beetle community in those areas (Kotze and 

O’Hara, 2003). Aviron et al. (2005) reported similar findings of more small bodied 

beetles in crop fields and larger bodied beetles in more woody areas. As large-bodied 

Carabid beetle species appear to be less tolerant of disturbance, they would be less likely 

to be found in agricultural systems where management practices occur at greater 

frequencies than in the past (Aviron et al., 2005; Ribera et al., 2001).  

The landscape of the Midwest region of the US, in particular Iowa, is dominated 

by an intensively managed agricultural system producing primarily corn (Zea mays L.) 

and soybeans (Glycine max (L.) Merr.). Carabid beetles, as natural enemies, utilize a 

combination of crop and semi-natural habitats and Gardiner et al. (2010) hypothesized 

that when conditions are favorable, they will be found in crop fields more often than 

when it is less favorable. In many parts of Iowa, there are few semi-natural areas to which 

beetles can retreat. Non-production areas within a field are typically grass only 

waterways or contour buffer and filter strips planted with grasses or a mixture of grasses 

and forbs (United States Department of Agriculture, 2003; United States Department of 

Agriculture, 2011). These non-cropped areas within a field may provide beetle habitat in 

addition to that found in field margins. 

The location of suitable beetle habitat can influence how frequently, how many 

and which prey species may be encountered by predatory beetles (Kromp, 1999; 
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MacLeod et al., 2004). From field margins beetles are able to reach prey at limited 

distances into the crop, but patches or strips of habitat within crop fields allow beetles to 

extend their reach (Collins et al., 2002; MacLeod et al., 2004). The authors referred to 

these British habitat patches within fields as ‘beetle banks’ which typically consist of 

various grasses, particularly tussock forming species (Collins et al., 2002). Other studies 

report that beetles were more likely to be found in areas planted with mixtures of 

flowering vegetation than in crop fields (Larsen et al., 2003; Varchola & Dunn, 1999; 

Woodcock et al., 2010). In northeastern Iowa, the highest beetle diversity was found in 

tallgrass prairie habitat surrounding soybean fields compared to surrounding woodlands 

or the soybean crop fields (Larsen et al., 2003). In addition, as plant diversity increased, 

so did the number of beetle species, increasing the functional diversity of these natural 

enemies (Larsen et al., 2003; Varchola & Dunn, 1999). Conservation Reserve Program 

(CRP) contour buffer and filter strips (United States Department of Agriculture, 2003; 

United States Department of Agriculture, 2011) planted with native tallgrass vegetation 

could provide habitat and refugia for a diversity of predatory beetle species within 

agricultural fields.  

This study examines predatory ground beetle communities found among contour 

buffer and filter strips under current CRP contract planted with varying diversities of 

native tallgrass prairie vegetation within row-cropped fields in Iowa. Plant diversity 

among the strips we studied ranged from low (0-3 forb species) to strips with more than 

15 native forb species. We address the following questions: (1) do strips of high plant 

diversity support a greater abundance, richness and diversity of Carabid beetles than 
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strips of low plant diversity; (2) do strips of high plant diversity support a greater 

diversity of Carabid beetle sizes than strips of low plant diversity? 

Materials and Methods 

Study Sites 

 

 We conducted all sampling in this study biweekly from June to August in 2014 

and 2015 and additionally in late May in 2015 at farm fields with either contour buffer (9 

sites) or filter strips (2 sites) of varying plant diversity in central and northeast Iowa. The 

strips ranged in age since installment from 2 to greater than 15 years. In 2014, three study 

sites were located in Jasper County, 2 of which were privately owned and 1 at the Neal 

Smith National Wildlife Refuge. The other sites were located on privately owned farms 

in each of the following counties: Buchanan, Carroll, Clayton, Dallas, Grundy, Guthrie 

and Story. After 2014, the Carroll County site was removed from the study by the 

landowner and in 2015 we sampled a site with a statistically indistinguishable (t=-1.118, 

A=0.0217, p=0.133; McCune and Mefford 2006) vegetation community in the adjacent 

Greene County. (Figure 1).  

Contour buffer and filter strip study sites were assigned to 1 of 3 categories based 

on the diversity of native forb species found throughout the growing season. Our plant 

diversity categories were as follows: low 0-3 forb species (3 sites), medium 5-13 forb 

species (4 sites) and high greater than 15 forb species (4 sites). We used CropScape 

(USDA National Agricultural Statistics Service Cropland Data Layer 2014) 30 meter 

resolution Cropland Data Layer (CDL) landcover maps to delineate forested area within a 

1 km radius of each strip and then calculated the percentage of forested landscape cover 

type. 
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Beetle Habitat Evaluation 

 We assessed floral resource and bare ground availability monthly within each 

strip. The percent cover of each species in bloom and percent bare ground within a square 

meter quadrat were estimated every 5 meters along a 60 meter transect for a total of 10 

quadrats. We determined site plant diversity by summing the number of species among 

all sample dates. 

Ground Beetle Sampling 

Ground beetles were sampled using two techniques: pitfall and emergence traps. 

Pitfall traps were constructed using 17.8 cm wide plastic funnels with a 3.8 cm neck 

inserted into a collection bottle. The funnels were placed in the soil with the edge at the 

soil surface with a rain shield (plastic plate) placed above the trap. Three pitfall traps 

were spaced approximately every 20 meters along the 60 meter transects in the areas of 

bare ground amid standing vegetation. Standing vegetation in 1 square meter was 

removed at each of two emergence trap installations. Emergence traps were constructed 

of white polyester mosquito netting (H. Christiansen Co.) and 32 oz (946 mL) plastic 

screw top inverted funnel collection bottles containing propylene glycol (Prestone® 

Lowtox Antifreeze) as a preservative. 

Pitfall and emergence trap contents were removed and placed in 70% ethanol 

every 2 weeks from June to August in 2014 providing 6 consecutive 2-week sampling 

collections. Bimonthly trap contents removal was repeated in 2015 beginning in mid-May 

resulting in 7 consecutive 2-week sampling collections. 
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Processing and Identification 

 

 Emergence and pitfall trap contents were washed and Carabid beetles pinned for 

identification to tribe using Arnett (1960). Pronotum width and elytron, hind femur and 

body length (from the front edge of the labrum to the distal end of elytra) of each beetle 

was measured following (Kotze & O’Hara, 2003). 

Data Analysis 

Ground Beetle Abundance, Richness and Diversity Analyses 

We combined bimonthly beetle collections into 3 monthly collections in 2014 

(June-August) and 4 in 2015 (May-August) due to numerous 2 week sample contents 

without beetles among all sites.  We used repeated measures mixed general linear models 

to analyze total Carabid beetle abundance, tribe richness, proportions of tribes 

represented by 10 or fewer individuals and proportions of tribes represented by 1 

individual among sites and plant diversity level and across dates (Proc Mixed in SAS; 

Littell et al. 2002). 

We used Chao1 estimators to compare estimated tribe richness at each site and 

treatment (fossil package; Vavrek 2011; R Development Core Team 2010). Unlike 

rarefaction, Chao1, a non-parametric method, considers the number of rare tribes, 

singletons and doubletons, (tribes represented by one or two individuals), collected to 

estimate the total number of tribes that may be present including estimations of 

undiscovered tribes (Chao 1984; Colwell and Coddington 1994). Sites were compared 

using 7 samples each and analyzed using mixed general linear models (Proc Mixed in 

SAS; Littell et al. 2002). We combined data for the Carroll county (sampled 3 times in 

2014) and Greene county (sampled 4 times in 2015) sites to attain 7 samples. 
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To test Carabid beetle diversity differences among sites, we calculated the Inverse 

Simpson’s Diversity Index (vegan package; Oksanen et al. 2016; R Development Core 

Team 2010) and then analyzed differences with repeated measures mixed general linear 

models (Proc Mixed in SAS; Littell et al. 2002). All models used year as the repeated 

measure and site as a random effect with post-hoc Tukey pairwise comparisons to 

differentiate among plant diversity levels. 

Site Characteristic Effects Analyses 

We used multiple regressions to assess relationships between site characteristics 

and ground beetle diversity measures. To test the assumption of independence we ran 

Spearman-Rank correlations on the following parameters: average percent floral cover, 

the number of blooming species found within quadrats over a year, the frequency of 

blooming species, the average percent bare ground and the percent forest cover within a 

1km radius. If two variables had a correlation (r value) above 0.7, the variables were 

considered correlated and one was chosen to be included in subsequent regression 

analyses (Proc Corr in SAS; Littell et al. 2002). Separate stepwise multiple regression 

analyses were run using total ground beetle abundance and total tribe richness as y 

variables and non-correlated strip characteristics as x variables. The variable entry and 

exit parameters were set at 0.05 (Proc Reg in SAS; Littell et al. 2002). 

Carabid Beetle Community Analyses 

To test for differences in Carabid beetle community compositions among plant 

diversity levels we used multi-response permutation procedures (MRPP) with Bray-

Curtis (Sorensen) distance measures (PC-ORD) (McCune and Mefford 2006). MRPPs 

are non-parametric and test for differences in Carabid community compositions between 
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two or more groups (McCune and Grace 2002). We averaged the total abundances of 

each tribe for each site among all sampling dates except for the Carroll county and 

Greene county sites which each were sampled only for one year each.  

Body Size 

 We used repeated measures mixed general linear models for pronotum width and 

body, elytron and hind femur length to examine average body size supported by a 

particular plant diversity level (Proc Mixed in SAS; Littell et al. 2002).  

Beetle body-size community composition at each site was examined. Following 

Schweiger et al. (2005), individual beetles were assigned one of four categories based on 

body size: very small (<5.5 mm), small (5.5-9.0 mm), medium (9.0-14.0 mm) or large 

(>14.0 mm). The proportion of individuals in each size category was compared within 

each plant diversity level using repeated measures mixed general linear models in which 

year was the repeated measure and site a random effect with post-hoc Tukey pairwise 

comparisons to identify differences among plant diversity levels (Proc Mixed in SAS; 

Littell et al. 2002). 

To examine the number of size categories represented at each plant diversity level 

we used an ordinal multinomial model with site as a random effect (Proc Glimmix in 

SAS; Littell et al. 2002). This model provided the cumulative probabilities of having 0, 0 

or 1, 0 or 1 or 2, and 0 or 1 or 2 or 3 body size categories represented in each plant 

diversity level. The representation probability of all 4 size categories was not included in 

the analysis as only 1 site collection in a single trapping period contained individuals of 

all 4 body size groups. Each probability was calculated from combined sampling periods 

and years for each plant diversity category.  
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Results 

Ground Beetle Abundance, Richness and Diversity Analyses 

 During 2014 and 2015 a total of 977 carabid individuals were collected and 

identified among 25 tribes. The majority of tribes were represented by 10 or fewer 

individuals at each site (68 and 100%) and at each level of plant diversity (63 and 74%) 

(Table 1). Furthermore, between 21 to 55% of ground beetle tribes collected among sites 

were represented by a single individual. Tribes represented only as singletons represented 

13, 25 and 21% of total tribes collected at low, medium and high plant diversity sites, 

respectively. All tribes were not found at each site or plant diversity level, we did not find 

tribe richness to differ among plant diversity levels (F2,7.83=0.32, p=0.7376). Similarly, 

total carabid abundance did not differ among plant diversity levels (F2,8.31=0.48, 

p=0.6367) (Table 1).  

The Chao 1 richness estimates varied by site with no particular level of plant 

diversity supporting higher estimated beetle tribe richness (Figure 2; Table 1). Chao1 

estimates of beetle tribe richness did not provide overlapping 95% confidence intervals 

among the difference plant diversity levels as low diversity sites had the least estimated 

tribes and medium diversity sites had the highest estimated number of tribes (Figure 3; 

Table 1).  

There were no significant differences among Inverse Simpson’s Diversity 

measures among plant diversity levels (F2,7.95=0.62, p=0.5641). 

Site Characteristic Effects 

Only two site characteristics were used as potential predictor variables for total 

abundance and total tribe richness models. The average percent floral cover and number 
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of blooming species within quadrats over a season, and frequency of blooming species in 

a strip were all highly correlated (Table 2) and we chose to include frequency of 

blooming species in the model. The frequency of blooming species and percent bare 

ground were also correlated. We chose to include the frequency of blooming species in 

our model as blooming species add vegetative structure for beetle habitat (Varchola & 

Dunn 2001). We also included percent forest cover due to its independence of the other 

parameters in the multiple regression analysis (Table 2). Overall, neither parameter was 

found to predict the total beetle abundance or tribe richness.  

Carabid Beetle Communities 

We found that there was no difference in carabid community composition among 

plant diversity levels (T=0.706, A=-0.036, p=0.739).  

Body Size 

There were no significant differences in body length or elytron length among 

plant diversity categories (F2,8.87=0.76, p=0.4948; F2,8.95=0.40, p=0.6835 respectively). 

Similarly, there were no significant difference in hind femur length or pronotum width 

among plant diversities (F2,8.44=0.33, p=0.7250; F2,8.27=0.93, p=0.4340 respectively) 

(Figure 4). 

Neither body length nor the variation found within body length differed among 

plant diversity levels (Figure 5). There was no difference in the number of body size 

categories represented among levels of plant diversity (F2,9.684=0.07, p=0.9303). The 

majority of the ground beetles collected in low and medium plant diversity levels were 

large, greater than 14 mm, followed by medium sized beetles, 9.0-14.0 mm. The majority 

of ground beetles collected at high diversity sites however, were medium sized beetles 



78 

 

followed by large sized beetles. All plant diversity levels significantly differed in the 

proportion of beetles in each body size group (low diversity: F3,17=15.15, p<0.0001; 

medium diversity: F3,24=19.00, p<0.0001; high diversity: F3,16=18.27, p<0.0001). All 

plant diversity levels supported similar proportions of medium and large beetles and 

similar proportions of small and very small beetles. However, all plant diversity levels 

had significantly smaller proportions of very small and small beetles than medium and 

large beetles (Figures 6 and 7).  

The probabilities of sites having beetles in any number of body size groups were 

similar among plant diversity levels. The cumulative probabilities were approximately 

the same for all plant diversity levels. The cumulative probability of each number of 

beetle size groups being represented was lowest for high plant diversity sites (Figure 8). 

Non-cumulative probabilities of each number of beetle size groups being represented 

were similar among all plant diversity levels. The medium diversity sites had the highest 

probability of having 0 body size groups represented or only 1 body size represented 

among all plant diversity levels. The probability of having 2 body size groups was 

highest at approximately 48% for all plant diversity levels. The high diversity sites had 

the highest probability (27%) of having 3 beetle size groups represented whereas medium 

diversity sites had the lowest probability (21%). There was nearly a 0% chance of any 

plant diversity level site having 4 body size categories represented (Figure 9). 

Discussion 

 

 Our results show that the flowering vegetation present within a contour buffer or 

filter strip does not influence taxonomic or functional diversity of predatory ground 

beetles. Total abundance, tribe richness and community composition were not 
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significantly different among the plant diversity levels. Furthermore, no plant diversity 

level supported significantly larger or smaller ground beetles. More medium and large 

sized beetles were supported than small or very small sized beetles among all plant 

diversity levels. There also were similar probabilities among plant diversity levels of 

supporting a particular number of beetle size groups although high diversity sites did 

have a slightly higher probability of supporting as many as 3 beetle size groups than low 

or medium diversity sites.  

 Ground beetles utilize non-cropped land as overwintering habitat and refugia 

(Gardiner et al., 2010). Typically beetle supportive habitat consists of grasses, including 

tussock grasses (Collins et al., 2002), but beetles are also more likely to be found in areas 

which include forbs (Woodcock et al., 2010). However, we found no difference in ground 

beetle abundance across a range of forb diversities. The low diversity sites, at which 

vegetation predominantly consisted of a single grass species, had similar abundances of 

ground beetles as the sites with a high diversity of grass and forb species. O’Rourke et al. 

(2008) however, found that crop fields of perennial forbs such as alfalfa and triticale-

alfalfa had higher abundances of ground beetles than crop fields of corn and soybean. 

Woodcock et al. (2005) found that the types of grass species, tussock versus fine 

grasses, influenced ground beetle abundance in field margins. In their study, the forb 

diversity present was lower (11 species) in the tussock grass and higher (19 species) in 

the fine grass field margins. Their study only reports differences based on the grass types 

as the forb species in the different mixes were similar. In our study only species of forbs 

were identified and measured although each site also had grass species present. The types 

of grasses present at our study sites could have influenced beetle abundance.  
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Plant diversity also was not found to influence carabid tribe richness or diversity 

in our study. However, the low plant diversity sites most often supported the lowest 

beetle abundance and the fewest tribes in comparison to sites of greater plant diversity. 

Other studies report that some flowering plant mixtures support more diverse ground 

beetles (Larsen et al., 2003) and higher carabid species richness (Varchola & Dunn, 

1999). Varchola & Dunn (1999) studied field borders in Iowa and found that the more 

vegetatively diverse field borders had similar ground beetle community compositions as 

simple grass borders, results similar to those of our study.  

Previous studies tested richness at the taxonomic level of species (Collins et al., 

2002; O’Rourke et al., 2008; Varchola & Dunn, 1999; Varchola & Dunn, 2001). 

Identifying the carabid species among the tribes collected in our study may allow 

detection of more subtle differences in beetle communities at that finer taxonomic scale. 

However, our investigation of carabid size classes reveals that contour buffer and filter 

strips with some forb diversity had a greater probability of supporting a greater number of 

size classes than sites of lower forb diversity indication that such plant diverse strips can 

provide ground beetle habitat within rowcropped fields.   

Carabid community composition was similar among sites in this study in concert 

with forb diversity level having no significant effect on either beetle abundance or tribe 

richness. These results contrast with those of previous studies in which local plant species 

composition was a good predictor of the ground beetle assemblage (Schaffers et al., 

2008). However, in our study the largest number of beetle individuals collected in each 

plant diversity level were of a single tribe, Opisthiini; members of this tribe accounted for 

between 30 and 40% of all individuals collected among all plant diversity levels. The 
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tribe Opisthiini is comprised of a total of 5 species contained within 2 genera, only one of 

which occurs in North America, Opisthius richardsoni (Bousquet & Smetana, 1991). 

Hence, a large portion of the beetle community among all sites and plant diversity levels 

was of a single species and such a community will have very low functional diversity and 

be less likely to contribute significantly to crop-pest suppression. Similarly, other studies 

have found that the majority of beetles captured in or near agricultural fields in the 

Midwest have been of 5 or fewer species (Clark et al., 1997; Luff, 2002; O’Rourke et al., 

2008). 

  In addition to Opisthiini, other tribes were present in our study and provided some 

diversity in contour buffer and filter strips, but diversity was similar among sites 

regardless of plant diversity. The majority (68-100%) of beetle tribes identified at each 

site were represented by fewer than 10 individuals with 21-55% of the tribes consisting of 

only one individual. Given such disproportionate distributions of beetle individuals 

among tribes it is not surprising that we found no significant differences in beetle 

diversity among study sites or levels of plant diversity. Other studies, such as Woodcock 

et al. (2005) and Varchola & Dunn (1999) report similar results with ground beetle 

diversity across various vegetation mixes in field margins. 

Ground beetle size has been correlated with their dispersal and feeding abilities 

and may effect which prey or prey life stage is consumed (Kromp, 1999; Woodcock et 

al., 2014). Previous studies have found a lack of large ground beetles within agricultural 

fields (Aviron et al., 2005; Kotze & O’Hara, 2003; Ribera et al., 2001). Aviron et al. 

(2005) used body size to classify large beetles as those with total body length >15mm and 

small <5mm. They, found more small bodied and fewer large bodied ground beetles in 
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intensively managed agricultural fields and the larger beetles were found more frequently 

where there were woody elements in the landscape. Kotze & O’Hara (2003) report steep 

declines of large bodied beetles in three European countries with increasing proportions 

of small bodied beetles. In Britain, the most abundant beetles in agricultural contexts 

were small, <5mm in total body length (Woodcock et al., 2005).  

In our study the majority of beetles were of medium and large sizes. Examining 

average body lengths revealed no differences among sites regardless of plant diversity 

level. But, the average body length was 13mm, which is not considered small. We did not 

collect ground beetles in the rowcropped portions of the fields and therefore cannot 

address possible differences from the beetle community in the strips. However, given 

consistent results from other studies in which the beetle community within crops was 

generally lacking larger beetles, it is possible that the contour buffer and filter strips 

examined in our study provide a more suitable habitat for larger beetles.  

Large beetle species tend to be flightless and their ability to escape areas of 

disturbance is thus reduced resulting in greater numbers of small beetles with functional 

wings found in areas of frequent and intense disturbance such as crop fields (Aviron et 

al., 2005; Kotze & O’Hara, 2003). Coombes & Sotherton (1986) found that more of the 

beetles found in field margins tend to disperse by crawling or walking rather than by 

flying. Since most of the ground beetles found in the contour buffer and filter strips, 

regardless of plant diversity, were larger bodied, these strips may be providing good 

overwintering habitat and access into the cropped portion of the fields.  

Several studies indicate that the presence of some flowering species in in addition to 

grasses supports a higher abundance and diversity of ground beetles (Larsen et al., 2003; 
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Varchola & Dunn, 1999; Woodcock et al., 2010). In our study, there was a similar trend 

among the plant diversity levels in the varying probabilities of beetle size groups 

represented at a site. The probability of having 2 body size groups represented was 

highest for all plant diversity sites at approximately 47% and the majority of beetles 

collected at each level were of medium and large size. The probability of having 3 body 

size groups represented was highest for the high diversity sites with low and medium 

sites having similar, slightly lower probabilities. However, no very small beetles were 

found at any high diversity site. The medium diversity sites also consistently had the 

highest cumulative probabilities of having higher numbers of body size groups 

represented. These results indicate that the higher levels of plant diversity were providing 

better habitat for beetles. Nevertheless, low diversity sites had the best representation of 

all body sizes and consistently had representation probabilities between medium and high 

diversity probabilities making the relationship of plant diversity and beetle diversity 

unclear. Together these results indicate that increasing the diversity of forbs among grass 

in contour buffer or filter strips from 0 to as few as 5 species may sufficiently enhance 

habitat to support a more functionally diverse community of ground beetles. 

Conclusions 

The functional diversity of the ground beetle community supported among 

contour buffer and filter strips censused in this study was not necessarily high. The high 

numbers of individuals of a single beetle tribe found among all sites contributes to 

lowering functional diversity. In addition, primarily larger beetles were collected. Large 

beetles are often flightless and therefore have limited dispersal abilities that could result 

in lower crop-pest suppression than would be provided by smaller flying beetles. No 
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particular forb plant diversity level among contour buffer and filter strips was found to 

support significantly greater taxonomic diversities of predatory ground beetles. However, 

higher plant diversity was directly related to higher probabilities of the presence of 

beetles from more size classes which could contribute to greater functional diversity. 

These results suggest that by increasing the number of forbs among grasses in contour 

buffer and filter strips, from 0 to as few as 5 species, habitat may be sufficiently enhanced 

to support a more functionally diverse community of ground beetles. 
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TABLES 

 

Table 1. The number of beetle individuals and tribes observed at each site; the number of tribes and proportion of tribes with 10 or 

fewer specimens collected; the number of tribes and proportion of tribes with one individual represented; the Chao1 estimate with 

95% CI from 9 samplings at each site of either contour buffer and filter strips across 2014 and 2015 (low diversity (LD): 0-3 forb 

species; medium diversity (MD): 5-13 forb species; high diversity (HD): greater than 15 forb species). Different letters within a 

column indicate statistically significant differences. (Proc Mixed; Littell et al. 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*High diversity site 3 and 4 data were combined for the Chao1 tribe richness estimate. 

 

 

 

 

 

Site Plant 

Diversity 

Level 

No. Beetle 

Individuals 

No. 

Beetle 

Tribes 

Collected 

No. and Proportion 

Tribes with ≤10 

Individuals 

No. and Proportion 

Singleton Tribes  

Chao 1 Tribe Richness  

(95% confidence interval) 

Bo Low 46 
218 

a 

10 
15 

a 

9 (0.90) 
10 (0.67) 

a 

3 (0.30) 
2 (0.13) 

a 

  13 (13-13) 15.7  

(14.9-16.4) 

a 

Mc Low 35 11 10 (0.91) 6 (0.55)   20 (15-25) 

Sh Low 137 13 110 (0.77) 5 (0.38)   26 (18-33) 

El Medium 97 

534 

a 

17 

24 

a 

14 (0.82) 

15 (0.63) 

a 

6 (0.35) 

6 (0.25) 

a 

23 (20-26) 
36.4  

(29.4-44.4) 

a 

Ka Medium 78 14 11 (0.79) 4 (0.29)   18 (15-21) 

Pl Medium 19 6 6 (1.0) 2 (0.33)   7 (6-8) 

Sl Medium 340 19 13 (0.68) 4 (0.21)   22 (20-24) 

Cr High 150 

225 

a 

16 

19 

a 

12 (0.75) 

14 (0.74) 

a 

6 (0.38) 

4 (0.21) 

a 

  34 (24-44) 
21.7  

(19.8-23.5) 

a 

NS High 25 12 12 (1.0) 5 (0.42) 15 (13-17) 

Gr High 10 5 5 (1.0) 2 (0.40) 
11 (11-11)* 

Pe High 40 8  7 (0.88) 3 (0.38) 

8
8
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Table 2. Spearman-Rank Correlation coefficients and p-values for the average percent floral cover in a strip, number of blooming 

species found within quadrats over a year, frequency of blooming species, the average percent bare ground in a strip and the percent 

forest cover within a 1km radius strip. (Spearman’s Rank Correlation; Proc Corr in SAS; Littell et al. 2002). 

 

Spearman Correlation Coefficients, N=20 

Prob > |r| under H0: Rho=0 

 
Percent Floral 

Cover 

Number of 

Blooming Species 

Frequency of 

Blooming Species 

Percent Bare 

Ground 

Percent Forest in a 

1km radius 

Percent Floral 

Cover 
1.00000 

0.86363 

p<0.0001 

0.93524 

p<0.0001 
n/a n/a 

Number of 

Blooming Species 

0.86363 

p<0.0001 
1.00000 

0.93157 

p<0.0001 
n/a n/a 

Frequency of 

Blooming Species 

0.93524 

p<0.0001 

0.93157 

p<0.0001 
1.00000 

0.72910 

p=0.0003 

0.55703 

p=0.0107 

Percent Bare 

Ground 
n/a n/a 

0.72910 

p=0.0003 
1.00000 

0.43321 

p=0.0564 

Percent Forest in a 

1km radius 
n/a n/a 

0.55703 

p=0.0107 

0.43321 

p=0.0564 
1.00000 

 

 

 

8
9
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FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study site locations and plant diversity type: low diversity (0-3 forb species), medium diversity (5-13 forb species) and high 

diversity (>15 forb species). 

 

Low Diversity 

Medium Diversity 

High Diversity 

2014 
2015 

9
0
 



91 

 

 
Figure 2. Chao1 tribe richness estimate for each site calculated after 7 samples from each 

site with 95% confidence intervals. (Chao1 estimate; fossil package; Vavrek 2011; R 

Development Core Team 2010). 

 

 
Figure 3. Chao1 tribe richness estimate for each plant diversity level after 21 samples 

with 95% confidence intervals. (Chao1 estimate; fossil package; Vavrek 2011; R 

Development Core Team 2010). 
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Figure 4. Mean pronotum width and body, elytron, and hind femur length of carabid 

beetles for each plant diversity level. Low diversity (0-3 forbs), medium diversity (5-13 

forbs) and high diversity (>15 forbs). (Proc Mixed; Littell et al. 2002). 

 

 
Figure 5. Box plot of body lengths of ground beetles collected at sites of different plant 

diversity levels: low diversity (0-3 forbs), medium diversity (5-13 forbs) and high 

diversity (>15 forbs). (Proc Mixed; Littell et al. 2002). 
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Figure 6. The proportion of ground beetle individuals in each plant diversity level for 

each body size group. Low diversity (0-3 forbs), medium diversity (5-13 forbs) and high 

diversity (>15 forbs). (Proc Mixed; Littell et al. 2002). 

 
Figure 7. Number of ground beetle individuals found in each body size category in each 

plant diversity level. Low diversity (0-3 forbs), medium diversity (5-13 forbs) and high 

diversity (>15 forbs).  
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Figure 8. Cumulative probabilities of each plant diversity level having a different number 

of ground beetle size categories represented. Low diversity (0-3 forbs), medium diversity 

(5-13 forbs) and high diversity (>15 forbs). Probabilities were generated using an ordinal 

multinomial regression in SAS (Proc Glimmix; Littell et al. 2002).  

 

 

 
Figure 9. Individual probabilities of a plant diversity level supporting different numbers 

of ground beetle size groups. Low diversity (0-3 forbs), medium diversity (5-13 forbs) 

and high diversity (>15 forbs). The probabilities and plot were generated in R (R 

Development Core Team, 2010).  
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CHAPTER 4. GENERAL CONCLUSIONS 

 

Summary 

 

 With Iowa’s landscape dominated by agricultural land, there is little semi-natural 

or natural habitat in the landscape for beneficial insects to utilize. Various farming 

practices include small tracts of land potentially available to provide wildlife habitat 

within the agricultural matrix. Such potential habitat includes contour buffer and filter 

strips located within the rowcropped field. However, the plant communities within these 

strips vary greatly from all-grass to grasses with high forb diversities. This study 

investigated contour buffer and filter strips of several levels of plant diversity as potential 

habitat for native bee communities and predatory ground beetle assemblages. 

 This study demonstrates that better habitat for native bee communities was 

provided as the diversity of floral resources increased. The number of bee species and 

individuals increased as plant diversity increased within contour buffer and filter strips. 

These results are similar to studies in Europe examining different Agri-Environment 

Schemes (AES) as habitat for pollinators. As the floral resources increased in AES 

habitat, bee abundance and richness increased (Haaland et al. 2011; Kells et al. 2001; 

Korpela et al. 2013; Pywell et al. 2006; Scheper et al. 2013). However, this study found 

no difference in bee diversity among plant diversity levels in contrast to the results of 

other studies such as Morandin and Kremen (2013) which examined native bee diversity 

in hedgerows. 

 Bee guilds reflect the differing nesting habits among bee species. Overall trends 

among all guilds, except bumble bees, suggested that strips of higher plant diversity 

supported higher bee abundance and species richness than low diversity sites. However, 
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numerous bee species are ground nesters and require areas of bare ground. Floral 

diversity in this study was correlated with the amount of bare ground in a strip. As floral 

diversity increased the amount of bare ground increased as well. In higher plant diversity 

sites we found a higher ground nesting bee abundance in emergence traps. Future studies 

could examine ground nesting communities in high plant diversity contour buffer and 

filter strips and compare the findings to communities in large areas of high diversity 

semi-natural habitat. This comparison could elucidate how successfully ground nesting 

bees utilize small areas of available habitat within an agriculturally dominated landscape.  

 Native bees also need floral resources and in this study as the growing season 

progressed, floral species present varied along with the bee abundance and species 

present. From early May through August, high plant diversity sites consistently had 

significantly higher abundances of bees present than low plant diversity sites. Bee species 

richness, on the other hand, was only significantly higher in high plant diversity sites in 

May and June. Even though floral species present changed over time all of the high 

diversity sites had the four floral species Harmon-Threat and Hendrix (2015) found to be 

particularly attractive to bees. The bee communities that are supported across Iowa 

interact with various plant species such as those identified by Harmon-Threat and 

Hendrix and those interactions are not random. The majority of interactions take place 

between generalist bees and generalist plants with fewer interactions between specialist 

bees and plants suggesting that plant mixes with generalist floral species could be 

beneficial to a higher abundance and number of bee species. 

 Contour buffer and filter strips regardless of vegetation diversity supported 

taxonomically similar predatory ground beetle tribe assemblages in Iowa. A large portion 
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of beetles collected in each plant diversity level was represented by a single tribe, likely 

contributing to lowered functional diversity. The size of ground beetles correlates with 

feeding and dispersal rates. Larger beetles are often flightless and are limited in their 

ability to disperse potentially limiting the ability to suppress crop pests consumed by 

smaller flying beetles. This study found the majority of beetles among all sites to be of 

medium and large size with an average body length of approximately 13mm. These 

results contrast with those of European studies in which few large ground beetles were 

found in agricultural fields (Aviron et al. 2005; Kotze and O’Hara 2003; Ribera et al. 

2001). However, a higher plant diversity was related to higher probabilities of the 

presence of beetles in more size categories. Based on our results, increasing forb diversity 

from 0 to 5 or more species in a contour buffer or filter strip could enhance a strip’s 

likelihood to support a more functionally diverse community of ground beetles. 

 Overall, this study has contributed to the growing knowledge base of potential 

habitat sources for bee pollinators and predatory ground beetles within agriculturally 

dominated landscapes. With the loss of semi-natural habitat, contour buffer and filter 

strips with high diversity vegetation mixes better support native bees than strips of grass-

only vegetation. Contour buffer and filter strips in general are providing habitat for 

similar predatory ground beetle assemblages regardless of plant diversity but the addition 

of a few forbs could provide support a more functionally diverse assemblage. 

Understanding how current CRP contour buffer and filter strip vegetation mixes 

influence beneficial insect communities can improve future strip designs for increasing 

suitable habitat within the landscape.  

 

 



98 

 

Literature Cited 

Aviron, S., Burel, F., Baudry, J., Schermann, N., 2005. Carabid assemblages in 

agricultural landscapes: Impacts of habitat features, landscape context at different 

spatial scales and farming intensity. Agric. Ecosyst. Environ. 108, 205–217. 

Haaland, C., Naisbit, R.E., Bersier, L.F., 2011. Sown wildflower strips for insect 

conservation: A review. Insect Conserv. Divers. 4, 60–80. 

Harmon-Threatt, A.N., Hendrix, S.D., 2015. Prairie restorations and bees: The potential 

ability of seed mixes to foster native bee communities. Basic Appl. Ecol. 16, 64–72. 

Kells, A.R., Holland, J.M., Goulson, D., 2001. The value of uncropped field margins for 

foraging bumblebees. J. Insect Conserv. 5, 283–291. 

Korpela, E.L., Hyvönen, T., Lindgren, S., Kuussaari, M., 2013. Can pollination services, 

species diversity and conservation be simultaneously promoted by sown wildflower 

strips on farmland? Agric. Ecosyst. Environ. 179, 18–24. 

Kotze, D.J., O’Hara, R.B., 2003. Species decline--but why? Explanations of carabid 

beetle (Coleoptera, Carabidae) declines in Europe. Oecologia 135, 138–148. 

Morandin, L.A., Kremen, C., 2013. Hedgerow restoration promotes pollinator 

populations and exports native bees to adjacent fields. Ecol. Appl. 23, 829–839. 

Pywell, R.F., Warman, E.A., Hulmes, L., Hulmes, S., Nuttall, P., Sparks, T.H., Critchley, 

C.N.R., Sherwood, A., 2006. Effectiveness of new agri-environment schemes in 

providing foraging resources for bumblebees in intensively farmed landscapes. Biol. 

Conserv. 129, 192–206. 

Ribera, I., Dolédec, S., Downie, I.S., Foster, G.N., Apr, N., 2001. Effect of Land 

Disturbance and Stress on Species Traits of Ground Beetle Assemblages. Ecology 

82, 1112–1129. 

Scheper, J., Holzschuh, A., Kuussaari, M., Potts, S.G., Rundlöf, M., Smith, H.G., Kleijn, 

D., 2013. Environmental factors driving the effectiveness of European agri-

environmental measures in mitigating pollinator loss - a meta-analysis. Ecol. Lett. 

16, 912–920. 

 


